1. Which of the following are subspaces? In each case, justify your answer.

 (a) U = the set of all upper triangular matrices in $M_{2\times2}$.
 (b) V = the set of all matrices in $M_{2\times2}$ with at least one entry equal to zero.
 (c) W = the set of those polynomials in P_3 with coefficients of t and t^2 equal to each other. That is, $2t^3 - t^2 - t + 5$ is in W but $4t^3 + 3t^2 + 2t + 1$ is not.
 (d) X, the subset of P_3 with $p(1) \neq p(-1)$.

2. Find bases for each of the following subspaces.

 (a) U = the set of all points on the plane $x - y - 2z = 0$.
 (b) V = the set of all 2×2 matrices A with $A = A^t$.
 (c) W = the set of all polynomials in P_3 with $p(1) = p(-1)$.

3. Let A be the matrix

 \[
 \begin{pmatrix}
 1 & 1 & 1 & 3 & 2 \\
 3 & 3 & 5 & 5 & 12 \\
 5 & 5 & -1 & 27 & -8
 \end{pmatrix}
 \]

 (a) Find a basis for the Null Space of A.
 (b) Find a basis for the Column Space of A.
 (c) Find a basis for the Row Space of A.
 (d) By row reducing A^t, find a “nice” basis for the Column Space of A.
 (e) Write the fourth column of A as a linear combinations of earlier columns.
 (f) Find another dependence relation among the columns of A (other than column 1 = column 2).
 (g) Find a dependence relation among the rows of A.

4. Suppose $\{u, v, w\}$ is a linearly independent set.

 (a) Show that $\{u + v, v + 2w, u + 2v + 2w\}$ is linearly dependent.
 (b) Carefully show that $4u + 6v + 4w$ is in Span$\{u + v, v + 2w, u + 2v + 2w\}$.
 (c) Carefully show that $6u + 4v + 6w$ is not in Span$\{u + v, v + 2w, u + 2v + 2w\}$. Explain where the independence of $\{u, v, w\}$ is needed.

5. Extend the set $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$ to a basis for $M_{2\times2}$. Explain your reasoning.
6. The matrix A in problem 3 was just one example of a 3×5 matrix; there are lots more 3×5 matrices around. Fill in the blanks: For every 3×5 matrix B,

$$__________ \leq \dim(\text{Null}(B)) \leq __________. $$

Justify your answer.

7. Suppose A is a 3×3 matrix and \[
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\text{ and } \begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix}
\] are both in $\text{Nul}(A)$.

(a) Show that \[
\begin{pmatrix}
2 \\
3 \\
2
\end{pmatrix}
\] is in $\text{Nul}(A)$.

(b) What can you say about the rank and nullity of A?