1. (20 points) Which of the following are subspaces of P_2? Justify your answers.

(a) U, the set of those polynomials with constant term equal to the coefficient of t^2. For example, $-5t^2 - 5t - 5$ and $7t = 0t^2 + 7t + 0$ are in U.

Solution: Simplest is that (some justification needed) $U = \text{Span}\{t^2 + 1, t\}$ and all spans are subspaces. We could also use the subspace test, as most people in the class did. Here, the solution would be as follows: U is clearly not empty. Suppose that $p(t)$ and $q(t)$ are in U, say $p(t) = at^2 + bt + a$ and $q(t) = ct^2 + dt + c$. Then $p(t) + q(t) = (a + c)t^2 + (b + d)t + (q + c)$, which has constant term equal to its coefficient of t^2 so $p(t) + q(t)$ is in U. Also, $kp(t) = kat^2 + kbt + ka$ again has constant term equal to its coefficient of t^2 so $kp(t)$ is in U. Thus, U is nonempty and closed under vector addition and scalar multiplication so U **IS** a subspace of P_2.

(b) V, the set of those polynomials with constant term not equal to coefficient of t^2. For example, $2t^2 + 3t + 3$ is in V (because $2 \neq 3$).

Solution: V is **NOT** a subspace of P_2 because it does not contain the 0-vector. As an alternative, $2t^2 + 3$ and $3t^2 + 2$ are in V, but their sum, $5t^2 + 5$ is not, so V is not closed under vector addition.

(c) W, the set of those polynomials in which at least two coefficients are the same. For example, $-5t^2 - 5t - 5$ and $2t^2 + 3t + 3$ are in W.

Solution: W is also **NOT** a subspace of P_2, again because of failure to be closed under vector addition. An example might be that $t^2 + 2t + 2$ and $t^2 + t + 2$ are both in W, but their sum, $2t^2 + 3t + 4$ is not.
2. (20 points) Find bases for the following vector spaces.

(a) \(V = \{at^3 + (a + b)t^2 + (a - b)t + b \mid a, b \in \mathbb{R}\} \). \(V \) is a subspace of \(P_3 \).

Solution: Since \(at^3 + (a + b)t^2 + (a - b)t + b = a(t^3 + t^2 + t) + b(t^2 - t + 1) \), it is clear that \(V = \text{Span}\{t^3 + t^2 + t, t^2 - t + 1\} \). Neither vector is a multiple of the other, so this set is also a basis.

(b) \(W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid b = a + c + d \right\} \). \(W \) is a subspace of \(M_{2 \times 2} \).

Solution: The general object in \(W \) has the form

\[
\begin{pmatrix} a & a + c + d \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
\]

so a spanning set is \(\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\} \). These vectors are also linearly independent: If \(a \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & a + c + d \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \), then we need \(a = c = d = 0 \). Thus, this set is also a basis.

3. (10 points) Suppose that \(\{u, v, w\} \) is a linearly independent set.

(a) Prove that \(\{u + v + w, v + w, w\} \) is also linearly independent.

Solution: Suppose that \(xu + v + w + y(v + w) + zw = 0 \). We write this as \(xu + (x + y)v + (x + y + z)w = 0 \). We have a combination of \(u, v, w \) equal to 0, but \(\{u, v, w\} \) is linearly independent. This means that the coefficients of this combination must be 0. That is, we must have \(x = 0, x + y = 0, x + y + z = 0 \). The first equation, with the second force \(y = 0 \), and these with the third equation force \(z = 0 \). Thus, \(x, y, z \) must be 0, so \(\{u + v + w, v + w, w\} \) is linearly independent.

(b) However, if \(w = 2u + 2v \), show that \(\{u + v + w, v + w, w\} \) is linearly dependent.

Solution: In this case, \(\{u + v + w, v + w, w\} = \{3u + 3v, 2u + 3v, 2u + 2v\} \). Since \(2(3u + 3v) = 3(2u + 2v) \) we have a dependence relation. Thus, this set is dependent.
4. (30 points) Let A be the matrix \[
\begin{pmatrix}
1 & 1 & 2 & 3 & 2 \\
3 & 3 & 6 & 9 & 6 \\
5 & 5 & 7 & 9 & 7
\end{pmatrix}.
\]

(a) Find a basis for the Null Space of A.

Solution: As a first step, we row reduce:
\[
\begin{pmatrix}
1 & 1 & 2 & 3 & 2 \\
3 & 3 & 6 & 9 & 6 \\
5 & 5 & 7 & 9 & 7
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & -6 & -3
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

so $x_1 = -x_2 + x_4$, $x_3 = -2x_4 - x_5$, $\vec{x} = \begin{pmatrix} -x_2 + x_4 \\ x_2 \\ -2x_4 - x_5 \\ x_4 \\ x_5 \end{pmatrix}$, and this leads to the basis
\[
\left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} \right\}.
\]

(b) Find **two different** bases for the Column Space of A. One should be “nice”.

Solution: The pivot columns of A form a basis, giving $\left\{ \begin{pmatrix} 1 \\ 3 \\ 5 \\ 6 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 6 \end{pmatrix} \right\}$. If we change these to rows and reduce:
\[
\begin{pmatrix} 1 & 3 & 5 \\ 2 & 6 & 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 0 & 0 & -3 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

Going back to columns, a nice basis is $\left\{ \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$.

(c) Find a basis for the row space of A.

Solution: The nonzero rows of the reduced matrix form a basis for the row space of A so a basis is $\{(1, 1, 0, -1, 0), (0, 0, 1, 2, 1)\}$.
5. (10 points) Let \(T = \{t^3 + t^2 + t + 1, 2t^3 + 2t^2 + t + 1, 3t^3 + 3t^2 + t + 1, 3t^3 + 2t^2 + 2t + 1\} \).

(a) Find a dependence relationship among the vectors of \(T \).

Solution: Let’s call the polynomials \(p_1(t), p_2(t), p_3(t), p_4(t) \). Some people noted by inspection that \(p_3(t) = 2p_2(t) - p_1(t) \). To spot this dependence, we could write \(ap_1(t) + bp_2(t) + cp_3(t) + dp_4(t) = 0 \) and look for solutions \(a, b, c, d \) and note that

\[
\begin{align*}
 a(t^3 + t^2 + t + 1) + b(2t^3 + 2t^2 + t + 1) + c(3t^3 + 3t^2 + t + 1) + d(3t^3 + 2t^2 + 2t + 1) \\
= (a + 2b + 3c + 3d)t^3 + (a + 2b + 3c + 2d)t^2 + (a + b + c + 2d)t + (a + b + c + d).
\end{align*}
\]

For this to be 0, we need each coefficient to be 0. That is,

\[
\begin{align*}
 a + 2b + 3c + 3d &= 0 \\
 a + 2b + 3c + 2d &= 0 \\
 a + b + c + 2d &= 0 \\
 a + b + c + d &= 0
\end{align*}
\]

\[
\Rightarrow \begin{pmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]

This tells us that we need \(d = 0 \) but \(c \) is free. Setting it equal to 1, \(a = 1, b = -2, c = 1 \), which gets us back to the dependence given.

(b) Find a basis for the subspace spanned by \(T \). Justify your answer.

Solution: Removing a dependent vector does not change the span, so \(\text{Span}(T) = \text{Span}\{p_1, p_2, p_4\} \), where we have removed \(p_3 \) from the set. I claim these polynomials are independent, so they form an independent spanning set, that is, a basis. To check independence, we ask that \(ap_1 + bp_2 + cp_4 = 0 \) and prove that \(a, b, c \) are forced to be 0. This is the same as setting \(c = 0 \) in part (a) of the problem, or deleting the third column of the matrix. When we do, the resulting reduced matrix will have a pivot in each column, meaning we need \(a = 0, b = 0, c = 0 \), as desired.
6. (10 points) Let \(U = \{ t^3, \ t^3 + t^2 + t + 1, \ 2t^3 + 2t^2 + t + 1, \ 3t^3 + 3t^2 + t + 1, \ 3t^3 + 2t^2 + 2t + 1 \} \). That is, \(U \) is the same as \(T \) in problem 5, but with \(t^3 \) included as well.

(a) Show that the span of \(U \) is all of \(P_3 \). One way: show the general polynomial is a combination of the polynomials in \(U \).

Solution: Following the hint, we try to write \(at^3 + bt^2 + ct + d \) as a combination of the five polynomials given. If we write

\[
\begin{align*}
 at^3 + bt^2 + ct + d &= x_1t^3 + x_2(t^3 + t^2 + t + 1) + x_3(2t^3 + 2t^2 + t + 1) \\
 &\quad\quad\quad\quad\quad\quad\quad\quad\quad+ x_4(3t^3 + 3t^2 + t + 1) + x_5(3t^3 + 2t^2 + 2t + 1) \\
 x_1 + x_2 + 2x_3 + 3x_4 + 3x_5 &= a \\
 x_2 + 2x_3 + 3x_4 + 2x_5 &= b \\
 x_2 + x_3 + x_4 + 2x_5 &= c \\
 x_2 + x_3 + x_4 + x_5 &= d
\end{align*}
\]

then matching coefficients, we need

\[
\begin{pmatrix}
 1 & 1 & 2 & 3 & 3 & a \\
 0 & 1 & 2 & 3 & 2 & b \\
 0 & 1 & 1 & 1 & 2 & c \\
 0 & 1 & 1 & 1 & 1 & d
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
 1 & 1 & 2 & 3 & 3 & a \\
 0 & 1 & 1 & 1 & 1 & d \\
 0 & 0 & 1 & 2 & 1 & b - d \\
 0 & 0 & 0 & 0 & 1 & c - d
\end{pmatrix}
\]

Since there is a pivot in every row, this system is ALWAYS consistent, meaning that no matter what \(a, b, c, d \) we choose, we will always be able to find the associated \(x_1, \ldots, x_5 \). That is, all polynomials in \(P_3 \) are combinations of the vectors in \(U \), or \(\text{Span}(U) = P_3 \).

(b) Find a subset of \(U \) that forms a basis for \(P_3 \). Justify your answer.

Solution: As we noted in problem 5 (a), \(3t^3 + 3t^2 + t + 1 \) is a combination of the two previous polynomials in \(U \). Thus, we can delete it from \(U \) without changing the span. Doing this, we have four remaining polynomials, and the span, \(P_3 \), is four-dimensional, the the remaining vectors must be a basis for \(P_3 \). That is, a basis is \(\{ t^3, \ t^3 + t^2 + t + 1, \ 2t^3 + 2t^2 + t + 1, \ 3t^3 + 2t^2 + 2t + 1 \} \).
Some **extra credit** you can think about if you have time.

7. (15 points) This problem deals with subspaces of $M_{2\times 3}$. Suppose we define the reverse of a matrix by $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}^R = \begin{pmatrix} c & b & a \\ f & e & d \end{pmatrix}$ and the flip by $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}^F = \begin{pmatrix} d & e & f \\ a & b & c \end{pmatrix}$.

For example, $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^R = \begin{pmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^F = \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$.

(a) Let $V = \{ A \in M_{2\times 3} \mid A = A^R \}$. Show that V is a subspace of $M_{2\times 3}$ and find a basis for V.

(b) Let $W = \{ A \in M_{2\times 3} \mid A = A^F \}$. Find a basis for W.

(c) Find a basis for $V \cap W$.

(d) Redo parts a, b, c when we replace $M_{2\times 3}$ by $M_{5\times 5}$.