1. Two bases for $M_{2 \times 2}$ are

$$B = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\} \quad \text{and} \quad C = \left\{ \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

(a) Find the transition matrix $P_{B \to C}$.

(b) Use part (a) to find $[A]_B$ given that $[A]_C = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

2. Let V be the subspace of P_3 consisting of all polynomials $p(t)$ with $p(3) = 0$. Here are two bases for V:

$$B = \{ t - 3, (t - 3)^2, (t - 3)^3 \}, \quad C = \{ t^3 - 3t^2, t^2 - 3t, t - 3 \}.$$

(a) Find the transition matrix $P_{B \to C}$.

(b) Find the transition matrix $P_{C \to B}$.

(c) Find $[p(t)]_C$, if $[p(t)]_B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

3. For each function T, show that T is linear, and find bases for the kernel and range.

(a) $T : M_{2 \times 2} \to M_{2 \times 2}$ defined by $T(A) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} A - A \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

(b) $T : P_2 \to M_{2 \times 2}$ defined by $T(at^2 + bt + c) = a \begin{pmatrix} 5 \\ 4 \\ 5 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + cI$.

4. Define a transformation $T : R^4 \to R^3$ as follows: Given a point (w, x, y, z), map it to (a, b, c) where a is the average of the first two coordinates, b is the average of the next two, and c is the average of the last two. For example, $T(3, 5, 6, 8) = (4, \frac{11}{2}, 7)$.

(a) Find $T(e)$ for each standard basis vector, e.

(b) Find the matrix of T.
5. Let $T : P_2 \rightarrow P_2$ be a linear transformation for which

$T(t^2 + t + 1) = t + 1, \quad T(t + 1) = 0, \quad T(1) = t^2 + t + 1.$

(a) Find a formula for $T(at^2 + bt + c)$. Hint: First write $at^2 + bt + c$ as a combination of $t^2 + t + 1, t + 1, 1$.

(b) What can you say about the dimension of the range of T and the dimension of the kernel of T? Note: This question could be answered independent of part (a), or by using part (a).

6. (a) Is there a linear transformation $T : M_{2\times2} \rightarrow M_{2\times2}$ for which BOTH the kernel and the range are spanned by the set $\{(1 1 0 0), (0 0 1 1)\}$? If so, find a formula for such a transformation. If not, prove that no such transformation exists.

(b) Is there a linear transformation $T : M_{2\times2} \rightarrow M_{2\times2}$ for which BOTH the kernel and the range are spanned by the set $\{(1 1 0 0), (0 0 1 1), (1 0 1 0)\}$? If so, find a formula for such a transformation. If not, prove that no such transformation exists.

7. Find all eigenvalues and a basis for each eigenspace.

(a) $A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$
(b) $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix}$
(c) $A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix}$
(d) $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

8. (a) If v is an eigenvector for a matrix A, show that v is also an eigenvector for A^2.

(b) If c is an eigenvalue of A, show that c^2 is an eigenvalue for A^2.

9. Suppose that A is a matrix for which $A^3 = 0$ but $A^2 \neq 0$. Let u be a vector for which $A^2u \neq 0$. Prove that the set $\{u, Au, A^2u\}$ is linearly independent. Hint: Form a linear combination, set it equal to 0, and multiply by A and by A^2 to get more relationships.

10. Give an example of a 3×3 matrix A for which $A^3 = 0$ but $A^2 \neq 0$. Hint: There are lots of them, and here is a method for constructing them. First, pick three linearly independent vectors in R^3, say v_1, v_2, v_3. Next, define a transformation $T : R^3 \rightarrow R^3$ as follows: $T(v_1) = v_2, \quad T(v_2) = v_3, \quad T(v_3) = 0$. If A is the matrix of T then $A^3 = 0$ but $A^2 \neq 0$. Can you prove this? Carry out the above procedure with $v_1 = (1, 1, 1), \quad v_2 = (0, 1, 1), \quad v_3 = (1, 0, -1)$.