I thought I would give some examples of extending independent sets to a basis. For a first example, suppose we wish to extend \(\{ t^3 + t + 1, t^4 + 2t^2 + t \} \) to a basis for \(P_4 \). The usual method on a problem like this: Extend the set to a spanning set by appending the vectors from a known spanning set, and then remove dependent vectors, making sure to keep the ones in the original set. In a case like this, it is simplest to append the vectors for the standard basis for \(P_4 \) to get the spanning set \(\{ t^3 + t + 1, t^4 + 2t^2 + t, 1, t, t^2, t^3, t^4 \} \). We may also use the fact that every basis for \(P_4 \) consists of five vectors, so any 5-vector spanning set must be a basis. Thus, we must find two dependence relations to remove vectors. The great thing about a standard basis, is that it is easy to take any vector and write it as a linear combination of standard basis vectors. We make use of that fact.

Let’s label the vectors in our spanning set \(v_1, v_2, v_3, v_4, v_5, v_6 \) and \(v_7 \). One dependence relation is \(v_1 = v_3 + v_4 + v_6 \). We want to keep \(v_1 \), but that’s ok. We can view any vector in a dependence relation as depending on the others. So we can pick any of \(v_3, v_4, v_6 \) to remove. That is, we can rewrite things, say, \(v_1 = v_1 - v_3 - v_6 \) or \(v_6 = v_1 - v_3 - v_4 \), etc. I usually just select the largest index, so I will remove \(v_6 \) from our set. Next, \(v_2 = v_4 + 2v_5 + v_7 \), and so \(v_7 \) can also be removed. Our basis is \(\{ v_1, v_2, v_3, v_4, v_5 \} = \{ t^3 + t + 1, t^4 + 2t^2 + t, 1, t, t^2 \} \).

It is worth noting here that which vector you remove can make a difference. For example, suppose we remove \(v_4 \) at the first stage. Then \(v_4 \) can’t be used in a linear dependence relation at the next stage. But \(\{ v_1, v_2, v_3, v_5, v_6, v_7 \} = \{ t^3 + t + 1, t^4 + 2t^2 + t, 1, t^2, t^3, t^4 \} \) must be dependent. I found the following dependence by inspection (looking at it, an answer came to me). I got \(v_2 - v_1 = -v_3 + 2v_5 - v_6 + v_7 \). That is, subtracting \(v_1 \) from \(v_2 \) got rid of the coefficient of \(t \) and we had all the other powers of \(t \) to work with. Thus, we can get rid of any of \(v_3, v_5, v_6, v_7 \). If we get rid of \(v_6 \) just to be different, we would have a basis \(\{ v_1, v_2, v_3, v_5, v_7 \} = \{ t^3 + t + 1, t^4 + 2t^2 + t, 1, t^2, t^4 \} \).

What if we can’t just spot dependence relations? For example, in a vector space without a standard basis there might not be any obvious ways to get dependence relations. So let’s do this problem without using obvious dependencies. In this case, we set up a generic linear combination of the seven vectors, set that equal to 0, and use that to get a system of equations to help us out. I dislike subscripts so I will use the beginning of the alphabet for my scalars:

\[
a(t^3 + t + 1) + b(t^4 + 2t^2 + t) + c \cdot 1 + dt + et^2 + ft^3 + gt^4 = 0. \tag{1}
\]

Rewrite this as a polynomial:

\[
(b + g)t^4 + (a + f)t^3 + (2b + e)t^2 + (a + b + d)t + (a + c) = 0,
\]

and to be 0, a polynomial must have all coefficients equal to 0. This gives us our system of equations:

\[
a + c = 0, \quad a + b + d = 0, \quad 2b + e = 0, \quad a + f = 0, \quad b + g = 0.
\]

We get the coefficient matrix and reduce
and determined variables, so suppose we say \(p = 27 \)
\[
\begin{pmatrix}
 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
 0 & 2 & 0 & 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{pmatrix} \Rightarrow \begin{pmatrix}
 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
 0 & 2 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{pmatrix} \Rightarrow \begin{pmatrix}
 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
 0 & 0 & 0 & 0 & 1 & 0 & -2
\end{pmatrix}
\]

This tells us that \(a = -f, \ b = -g, \ c = f, \ d = f + g, \ e = 2g \). How does this give us dependence relations? Pick \(f = 1, \ g = 0 \) and we get \(a = -1, \ b = 0, \ c = 1, \ d = 1, \ e = 0, \ f = 1, \ g = 0 \). That is, our equation (1) above becomes

\[-1(t^3 + t + 1) + 1 + t + t^3 = 0,
\]
or \(v_1 = v_3 + v_4 + v_6 \), as before. Setting \(f = 0, \ g = 1 \) gives the other dependence relation.

As a second example, let \(V \) be the space of all polynomials in \(P_3 \) that satisfy \(p(2) = 0 \) and \(p(3) = 0 \). The problem: Find a basis for \(V \), and extend this to a basis for \(W \), the set of polynomials in \(P_3 \) that only satisfy the condition \(p(3) = 0 \).

Finding a basis for \(V \): if \(p(x) = ax^3 + bx^2 + cx + d \) then we need \(8a + 4b + 2c + d = 0 \) and \(27a + 9b + 3c + d = 0 \). It is easier to use variables with the smallest coefficients as determined variables, so suppose we say \(a \) and \(b \) are free. Subtracting the first equation from the second, \(19a + 5b + c = 0 \), so \(c = -19a - 5b \) and \(d = -2c - 8a - 4b = 30a + 6b \). As an aside, this would happen if we used row reduction, but with columns \(d, c, b, a \):

\[
\begin{pmatrix}
 1 & 2 & 4 & 8 \\
 1 & 3 & 9 & 27
\end{pmatrix} \Rightarrow \begin{pmatrix}
 1 & 2 & 4 & 8 \\
 0 & 1 & 5 & 19
\end{pmatrix} \Rightarrow \begin{pmatrix}
 1 & 0 & -6 & -30 \\
 0 & 1 & 5 & 19
\end{pmatrix}
\]

We have \(at^3 + bt^2 + ct + d = at^3 + bt^2 - (19a + 5b)t + (30a + 6b) = a(t^3 - 19t + 30) + b(t^2 - 5t + 6) \). This means that \(\{t^3 - 19t + 30, t^2 - 5t + 6\} \) is a basis for \(V \). Now we want to extend this to a basis for \(W \). It turns out that \(W \) is 3-dimensional. If we knew this, then any three independent vectors in \(W \) would form a basis for \(W \), and so the task is to find one extra vector in \(W \), independent of the first two. In fact, \(t - 3 \) is in \(W \) and it is independent of the other two, so \(\{t^3 - 19t + 30, t^2 - 5t + 6, t - 3\} \) is such a basis. I will let you check the independence of these vectors. If we don’t know \(W \) is 3-dimensional, we can try to find a basis for it. Setting \(27a + 9b + 4c + d = 0 \) and writing \(d = -27z - 9b - 3c \) we have that any vector in \(W \) can be written \(p(t) = at^3 + bt^2 + ct - 27a - 9b - 3c = a(t^3 - 27) + b(t^2 - 9) + c(t - 3) \) so \(W \) is 3-dimensional, with basis \(\{t^3 - 27, t^2 - 9, t - 3\} \). It turns out that any one of these vectors can be appended to the basis for \(V \) to get a new basis for \(W \). If we did not want to use facts about dimension, we could still do this problem: Given our bases \(\{t^3 - 19t + 30, t^2 - 5t + 6\} \) for \(V \) and \(\{t^3 - 27, t^2 - 9, t - 3\} \) for \(W \), the set \(\{t^3 - 19t + 30, t^2 - 5t + 6, t^3 - 27, t^2 - 9, t - 3\} \)
is a spanning set for W so we just remove dependent vectors, while making sure to keep the first two. If we call these vectors v_1 through v_5, I actually checked (via a system of equations) that $5v_1 - 19v_2 - 5v_3 + 19v_4 = 0$ and $v_1 - v_3 + 19v_5 = 0$ so v_4 and v_5 depend on v_1, v_2, v_3, so these three form a basis.

One final example. Let V be the the set of all 2×2 matrices who’s entries add to 0.
You should be able to check that this is a vector space. It has many nice bases, but suppose we are told that \[\left\{ \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ 3 & -1 \end{pmatrix} \right\} \] is a basis. Our task: to find a basis that contains the matrix \[\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}. \] We could proceed as follows: form the set containing this and the other three matrices: \[\left\{ \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ 3 & -1 \end{pmatrix} \right\}, \] and look for a dependence relation (we need to remove one vector because dim(V) = 3). Maybe a dependence relation can be found by inspection, but if not, we can use a system of equation. First, set a generic combination of the four matrices to 0:
\[a \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} + b \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 1 & -3 \\ 3 & -1 \end{pmatrix} = 0, \]
or
\[\begin{pmatrix} a + b + c + d & a - b - 2c - 3d \\ a + b + c + 3d & -3a - b - d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \] Now we have four linear equations, we can form a matrix and reduce:
\[\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -2 & -3 \\ 1 & 1 & 1 & 3 \\ -3 & -1 & 0 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -3 & -4 \\ 0 & 0 & 0 & 2 \\ 0 & 2 & 3 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \] This says that we need $a = \frac{1}{2}c, b = -\frac{3}{2}c$ and $d = 0$. If we pick $c = 2$ then our dependence relation is
\[\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} - 3 \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + 2 \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix} = 0, \]
so we can eliminate either the second or third matrix, but not the fourth. One basis is
\[\left\{ \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ 3 & -1 \end{pmatrix} \right\}. \]