1. Let \(A = \begin{pmatrix} 3 & 2 & 2 & 1 & 1 \\ 4 & 3 & 3 & 2 & 2 \\ 5 & 4 & 4 & 3 & 3 \end{pmatrix} \).

(a) Find the \(LU \) decomposition of \(A \).

(b) Find a basis for the null space of \(A \).

(c) Find a “nice” basis for the column space of \(A \).

(d) Write the fourth column of \(A \) as a linear combination of the first two.

(e) Describe the set of \(b \) for which \(Ax = b \) is consistent.

2. Find the inverse of \(A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 1 \end{pmatrix} \) in two ways: by row reduction, and by the adjoint formula.

3. Find the determinant of the matrix \(A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 3 & 5 & 4 \\ 2 & 6 & 9 & 9 \\ 2 & 4 & 6 & 12 \end{pmatrix} \).

4. Let \(V = \{(w, x, y, z) \mid w + x = y + z\} \).

(a) Prove that \(V \) is a subspace of \(\mathbb{R}^4 \).

(b) Find a basis for \(V \).

(c) Find a basis for \(V \) which contains the vector \((1, 1, 1, 1)\).

5. Let \(T : P_2 \to P_2 \) be defined by \(T(p(t)) = p(t) + p'(t) \).

(a) Show that \(T \) is a linear transformation.

(b) Show that \(T \) is not diagonalizable

6. Two bases for \(P_2 \) are \(B = \{(1 + t)^2, 1 + t, 1\} \) and \(C = \{1, 1 - t, (1 - t)^2\} \). Find the transition matrices from \(B \) to \(C \) and \(C \) to \(B \). Make sure you know which is which!

7. Determine which of the following matrices is diagonalizable. Justify each answer.

\[(a) \quad A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{pmatrix} \quad (b) \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[(c) \quad C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & -1 & -1 & -1 \end{pmatrix} \quad (d) \quad D = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & -1 & 1 & -1 \end{pmatrix} \]
8. Is there a linear transformation from P_2 to P_2 with the following properties? If so, give an example of such a transformation. Otherwise, prove there is no such transformation.
 (a) $T(t^2 + t + 1) = t^2 + t + 1$, $T(t^2 + 2t + 3) = 3t^2 + 2t + 1$, $T(t^2 + 2t + 2) = 2t^2 + 2t + 1$
 (b) $T(t^2 + t + 1) = t^2 + t + 1$, $T(t^2 + 2t + 3) = 3t^2 + 2t + 1$, $T(t^2 + 3t + 5) = 5t^2 + 3t + 1$
 (c) $T(t^2 + t + 1) = t^2 + t + 1$, $T(t^2 + 2t + 3) = 3t^2 + 2t + 1$, $T(t^2 + 3t + 5) = 2t^2 + 2t + 1$

9. For each linear transformation T, find bases for the kernel and the range. Then find a basis B for which $[T]_B$ is diagonal.
 (a) $T : M_{2 \times 2} \rightarrow M_{2 \times 2}$ defined by $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + d & b + c \\ b + c & a + d \end{pmatrix}$.
 (b) $T : P_2 \rightarrow P_2$ defined by $T(p(t)) = (t + 1)^2 p''(t) - (t + 1)p'(t) + 3p(t)$.

10. (a) Show that $T : P_{10} \rightarrow P_{10}$ defined by $T(p(t)) = p(t + 1)$ is NOT diagonalizable.
 (b) Show that $T : P_{10} \rightarrow P_{10}$ defined by $T(p(t)) = p(2t + 1)$ IS diagonalizable.

11. A linear transformation T for which $T(T(v)) = v$ for all v is called a reflection.
 (a) Show that $T : P_n \rightarrow P_n$ defined by $T(p(t)) = p(1 - t)$ is a reflection.
 (b) For the case of $n = 3$ in part (a), find all eigenvalues and a basis for each eigenspace of T.
 (c) In general, prove that if T is a reflection, then its only possible eigenvalues are 1 and -1.

12. An X-Matrix is a matrix of the form $\begin{pmatrix} a & 0 & a \\ 0 & b & 0 \\ c & 0 & c \end{pmatrix}$.
 (a) Show that the set of all X-Matrices is a subspace of $M_{3 \times 3}$.
 (b) Find a basis for the set of all X-Matrices.
 (c) Give an example of an X-Matrix which is diagonalizable.
 (d) Give an example of an X-Matrix which is not diagonalizable.

13. Consider the transformation $T : M_{3 \times 2} \rightarrow M_{3 \times 2}$ that takes a $M_{3 \times 2}$ matrix and turns it upside down. for example, $T \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{pmatrix}$.
 (a) Show that T is a reflection (see problem 11).
 (b) Find a bases for each eigenspace of T.

14. Let $T : V \rightarrow W$ be a linear transformation.
 (a) If $\{u, v\}$ is linearly independent in V, does $\{T(u), T(v)\}$ have to be linearly independent in W? If so, prove it, if not, give a counter example.
 (b) If $\{T(u), T(v)\}$ is linearly independent in W, does $\{u, v\}$ have to be linearly independent in V? If so, prove it, if not, give a counter example.