Math 2326 Fall 2008

р	q	p→q	¬p	¬pvq
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Consider the truth tables for $p \rightarrow q$ and $\neg p \lor q$:

We see that the $p \rightarrow q$ and $\neg p \lor q$ columns are the same. It would seem funny to say that $p \rightarrow q = \neg p \lor q$, so we invent a new term. Two propositions are said to be **logically equivalent** if they have the same truth value for all possible truth values of the constituents. (Said differently, they are logically equivalent if their Truth Tables are the same.) We will **not** write $p \rightarrow q = \neg p \lor q$, but we will write $p \rightarrow q \equiv \neg p \lor q$, with " \equiv " having the meaning "is logically equivalent to."

Related ideas are the idea of a tautology, and a contradiction. A **tautology** is a proposition that is always true (it's truth table has nothing but T in its column). A **contradiction** is always false (nothing but F in its column). The simplest example of a tautology is $p \vee \neg p$. For a contradiction, $p \wedge \neg p$. Technically, two compound propositions, P and Q are called logically equivalent if $P \leftrightarrow Q$ is a tautology. Below is a list of important logical equivalences:

Name	Law	Name	Law
Domination	$p \vee T = T$	Idempotence	$p \lor p \equiv p$
	$p \land F = F$		$p \land p \equiv p$
Identity	$p \lor F = p$	Commutivity	$p \lor q \equiv q \lor p$
	$p \land T \equiv p$		$p \land q \equiv q \land p$
Double Negation	$\neg(\neg p) \equiv p$		

page	2
P"0-	_

Name	Law	
Associativity	$p \lor (q \lor r) = (p \lor q) \lor r$	
	$p \land (q \land r) \equiv (p \land q) \land r$	
Distributive Laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
De Morgan's Laws	$\neg (p \lor q) \equiv \neg p \land \neg q$	
	$\neg (p \land q) \equiv \neg p \lor \neg q$	

In addition to the above, there are several important equivalences involving the implication and the biconditional. These are:

and the openational. These is $p \rightarrow q \equiv \neg p \lor q$, $\neg (p \rightarrow q) \equiv p \land \neg q$, $p \rightarrow q \equiv \neg q \rightarrow \neg p$

 $p \nleftrightarrow q = (p \to q) \land (q \to p), \quad p \nleftrightarrow q = (p \land q) \lor (\neg p \land \neg q).$

With the use of logical equivalences, you can show things without using a truth table. For example, a logical rule called the **Law of Simplification** says $(p \land q) \rightarrow p$ is a tautology. Here are two proofs, the first using truth tables:

р	q	p∧q	$(p \land q) \rightarrow p$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

Alternatively, using logical equivalences, we have

$$\begin{aligned} (p \land q) &\rightarrow p \equiv \neg (p \lor q) \lor p \equiv (\neg p \lor \neg q) \lor p \\ &\equiv (\neg q \lor \neg p) \lor p \equiv \neg q \lor (\neg p \lor p) \equiv \neg q \lor T \equiv T. \end{aligned}$$

Here, P = T means that P is a tautology.