1. Determine, with reasons, which of the following matrices is diagonalizable.

(a) $A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$
(b) $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix}$
(c) $C = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix}$
(d) $D = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
(e) $E = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & -1 & -1 & -1 \end{pmatrix}$
(f) $F = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & -1 & 1 & -1 \end{pmatrix}$

2. A linear operator T satisfying $T^k = 0$ for some k is called a nilpotent operator.

(a) Prove that the only nilpotent operator that is diagonalizable is the zero operator.

(b) Give an example of a nonzero nilpotent operator on P^3.

(c) Suppose that V is n-dimensional and that $T^n = 0$ but $T^{n-1} \neq 0$. If v is any vector with the property that $t^{n-1}(v) \neq 0$ show that $B = \{v, T(v), T^2(v), \ldots, T^{n-1}(v)\}$ is a basis for V.

(d) Find the matrix of T with respect to the basis B in part (c).

3. Can you give an example of a 10×10 matrix A with $A^6 = 0$ but $A^5 \neq 0$?

4. Let $T : F^{2 \times 2} \rightarrow F^{2 \times 2}$ be defined by $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a - b + c + d & -a + b + c + d \\ c - d & d - c \end{pmatrix}$.

(a) Find the matrix of T with respect to the standard basis.

(b) If $v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ and $w = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, it turns out that $B = \{v, T(v), T^2(v), w\}$ is a basis for $F^{2 \times 2}$. Find the matrix of T with respect to B.

(c) Find the characteristic polynomial of T, all eigenvalues, and a basis for each eigenspace.

(d) Is T diagonalizable? Explain.

5. Let $\langle u, v \rangle$ be the Euclidean inner product on R^3.

(a) If U is the subspace spanned by $(1, 1, 0)$, find a basis for U^\perp.

(b) Find the matrix for the orthogonal R^3 onto U.

(c) Find the matrix for the orthogonal projection of R^3 onto U^\perp.

(d) If V is the subspace spanned by $(1, 1, 1), (1, 2, 3), (1, 3, 5)$, find a basis for V^\perp.

(e) Find an orthogonal basis for V.
6. Using the euclidean inner product on \mathbb{R}^3, find an orthogonal basis containing the vector $(1, 1, 1)$.

7. Find orthogonal bases for P^2 with respect to the following inner products.
 (a) $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$
 (b) $\langle p(x), q(x) \rangle = \int_{0}^{1} p(x)q(x)dx$

8. Here is a nice way to create inner product spaces from other inner product spaces. Let V be an inner product space with inner product $\langle u, v \rangle$.
 (a) If T is an invertible linear operator on V, prove that $\langle u, v \rangle_T \overset{\text{def}}{=} \langle T(u), T(v) \rangle$ is also an inner product.
 (b) What goes wrong if T is not invertible?
 (c) Find an inner product on \mathbb{R}^2 with $\langle (1, 2), (2, 1) \rangle = 0$.

9. Let V be an inner product space.
 (a) If u and v are nonzero vectors in V, prove that $\operatorname{proj}_u(x) + \operatorname{proj}_v(x)$ is a projection if and only if u is orthogonal to v.
 (b) If U and W are subspaces of V when is $\operatorname{proj}_U(x) + \operatorname{proj}_W(x)$ a projection?

10. If V is a 4-dimensional inner product space and u and v are orthogonal, what can you say about the eigenvalues, eigenvectors, and characteristic polynomial of $T(x) = 2 \operatorname{proj}_u(x) + 4 \operatorname{proj}_v(x)$? Is T diagonalizable?