1. Let \(A = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & -3 \\ -4 & 3 & 6 \end{pmatrix} \).

 (a) Find the determinant of \(A \) by a cofactor expansion down the second column.

 (b) Use the adjoint formula to find \(A^{-1} \).

2. Consider the sequenced of matrices

 \[
 M_2 = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 5 \end{pmatrix}, \quad M_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 3 & 3 \\ 1 & 3 & 5 & 5 \\ 1 & 3 & 5 & 7 \end{pmatrix}, \ldots
 \]

 Find a formula for \(\det(M_n) \) as a function of \(n \).

3. Consider the block matrix \(M = \begin{pmatrix} 0 & A \\ B & C \end{pmatrix} \), where \(A \) and \(B \) are square matrices.

 (a) Show that \(D(A) = \det(M) \), where \(B \) and \(C \) are fixed is \(n \)-linear and alternating in the rows of \(A \).

 (b) Use part (a) to find a formula for \(\det(M) \). Note: if \(A \) is \(m \times m \) and \(B \) is \(n \times n \), the result might depend on \(m \) and \(n \).

4. Determine, with reasons, which of the following matrices is diagonalizable.

 (a) \(A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} \)

 (b) \(B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \)

 (c) \(C = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix} \)

 (d) \(D = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \)

 (e) \(E = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \\ 3 & -1 & -1 \end{pmatrix} \)

 (f) \(F = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & -1 & 1 & -1 \end{pmatrix} \)

5. A linear operator \(T \) satisfying \(T^k = 0 \) for some \(k \) is called a \textbf{nilpotent} operator.

 (a) Prove that the only nilpotent operator that is diagonalizable is the zero operator.

 (b) Give an example of a nonzero nilpotent operator on \(P^3 \).

 (c) Suppose that \(V \) is \(n \)-dimensional and that \(T^n = 0 \) but \(T^{n-1} \neq 0 \). If \(v \) is any vector with the property that \(t^{n-1}(v) \neq 0 \) show that \(B = \{ v, T(v), T^2(v), \ldots, T^{n-1}(v) \} \) is a basis for \(V \).

 (d) Find the matrix of \(T \) with respect to the basis \(B \) in part (c).
6. Can you give an example of an 8×8 matrix A with $A^6 = 0$ but $A^5 \neq 0$?

7. Let $T : F^{2 \times 2} \to F^{2 \times 2}$ be defined by $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a - b + c + d & -a + b + c + d \\ c - d & d - c \end{pmatrix}$.

 (a) Find the matrix of T with respect to the standard basis.

 (b) If $v = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $w = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, it turns out that $B = \{v, T(v), T^2(v), w\}$ is a basis for $F^{2 \times 2}$. Find the matrix of T with respect to B.

 (c) Find the characteristic polynomial of T, all eigenvalues, and a basis for each eigenspace.

 (d) Is T diagonalizable? Explain.

8. Give an example of a block upper triangular matrix $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ for which the minimal polynomial of M is not the least common multiple of the minimal polynomials for A and C.

9. Prove that any matrix which commutes with $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is diagonalizable. Is the same true for any matrix which commutes with $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$?