From the book: 4.3.10 (Sections 4.3), 4.4.4, 4.4.6 (Sections 4.4). Also do the following:

1. One can talk about least-squares approximations in any inner product space. Given a linear operator T on V, a least-squares solution to $T(x) = b$ is any vector v for which $\|T(v) - b\|$ is a minimum.
 (a) Let U be the range of T. Why does $T(x) = \text{proj}_U(b)$ always have to have a solution?
 (b) Prove that v is a least-squares solution to $T(x) = b$ if and only if v is a solution to $T(x) = \text{proj}_U(b)$.
 (c) Using the inner product $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x) \, dx$ on P^3, and $D(p(x)) = p'(x)$, find a least squares solution to $T(p(x)) = x^3$.
 (d) With the same inner product as in part (c), find all least squares solutions to $D^2(p(x)) = x^3 + x^2 + x + 1$, where D^2 is the second derivative operator.

2. On the last homework, we used the following inner product on P^2.
 $$\langle p(x), q(x) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$
 (a) Using this inner product for P^2 and the Euclidean inner product for R^3, show that the linear transformation $T : P^2 \rightarrow R^3$ defined by $T(ax^2 + bx + c) = \begin{pmatrix} c \\ b \\ a \end{pmatrix}$ is not an isometry.
 (b) Find a formula for an inner product on R^3 so that the T is part (a) is an isometry.
 (c) Let $T : P^2 \rightarrow P^2$ be defined by $T(ax^2 + bx + c) = ax^2 + c$. Show that T is a Hermitian operator with respect to this inner product.
 (d) If $D : P^2 \rightarrow P^2$ is defined by $D(p(x)) = p'(x)$, determine whether D is a Hermitian operator with respect to this inner product.

For extra credit:

3. Here is a proof that if V is a complex inner product space, then $\langle v, T(v) \rangle = 0$ for all $v \in V$ only when T is the 0 operator.
 (a) Show that the only eigenvalue of T is 0.
 (b) If $T \neq 0$, show that there is a vector v in V such that $T(v) \neq 0$ but $T^2(v) = 0$.
 (c) Let $v = u + T(u)$, where $T(u) \neq 0$ but $T^2(u) = 0$. Show that $\langle v, T(v) \rangle \neq 0$, and conclude the proof.
 (d) If we define T on R^2 by $T(x, y) = (-y, x)$, show that with the Euclidean inner product on R^2, $\langle v, T(v) \rangle = 0$ for all $v \in R^2$. What goes wrong with the proof in parts (a), (b), (c) in this case?