From the book, do problems 2, 3, 4 on page 99.

Also do the following question.

1. Consider the congruence \(x^2 - 10x + 16 \equiv 0 \pmod{m} \).
 (a) Explain why this congruence has solutions for all positive integers \(m \).
 (b) Find the solutions when \(m = 150 \).
 (c) Find the solutions when \(m = 300 \).

2. Consider the equation \(x^2 - 10x + 13 \equiv 0 \pmod{m} \).
 (a) Find a positive integer \(m \) for which this congruence has no solutions.
 (b) What is the largest \(m \) for which the congruence has exactly one solution? Explain.
 (c) What is the smallest \(m \) for which the congruence has more than 2 solutions? Explain.

3. Consider the congruence \(x^2 + 14x - 35 \equiv 0 \pmod{m} \).
 (a) Use problem 2 from the book to find the solutions to this congruence when \(m = 67 \).
 (b) When \(m = 71 \), the congruence has no solutions. What happens when you try to use the method in problem 2 to find solutions?

For extra credit:

4. With regard to problems 1, 2 above, for which \(m \) do the congruences have an odd number of solutions?