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1 Introduction

1.1 Simple Continued Fractions

Suppose we are trying to solve the following quadratic equation:

x2 − 9x− 1 = 0.

Dividing by x we can rewrite it as

x = 9 +
1

x
.

Notice that the variable x is still found on the right-hand side of this equation and thus can be replaced

by its equal, namely 9 + 1
x , which gives

x = 9 +
1

9 + 1
x

.

We can continue this procedure indefinitely to produce a never-ending staircase of fractions:

x = 9 +
1

9 + 1
9+ 1

9+...

. (1.1.1)

At first glance, as x continues to appear on the right-hand side of this continued fraction, it does not seem

to be getting any closer to the solution of the equation. It turns out, however, it contains a succession of

fractions,

9, 9 +
1

9
, 9 +

1

9 + 1
9

, 9 +
1

9 + 1
9+ 1

9

, ... ,

which are obtained by stopping at consecutive stages. These numbers, which are called convergents [3, p.

6], when converted into fractions give better and better approximations to the positive root of the given

quadratic equation

9,
82

9
= 9.111...,

747

82
= 9.10975...,

6805

474
= 9.10977....

The quadratic formula gives the actual root

x =
9 +
√

85

2
= 9.10977...

which is consistent with the last result above. Multiple-decked fractions like (1.1.1) are called continued

fractions. Writing a number using such a representation seems very insignificant. It turns out, however,

this kind of representation provides much insight into many mathematical problems, particularly into the

nature of numbers [3, p. 3]. We must start with the basics first, however. We start by introducing some
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definitions. An expression of the form

x = a0 +
b1

a1 + b2
a2+

b3
a3+...

(1.1.2)

is called a continued fraction. In general, the numbers a0, a1, a2, ..., b1, b2, b3, ... may be any real or complex

numbers, and the number of terms may be finite or infinite. Furthermore, if a continued fraction has

b1, b2, b3, ... all equal to 1, then it is called a simple continued fraction. An infinite simple continued

fraction has, therefore, the following form

x = a0 +
1

a1 + 1
a2+

1
a3+...

, (1.1.3)

where a0 is an integer and the terms a1, a2, a3, ... are positive integers. It is convenient to denote

(1.1.3) by the compact symbol [a0, a1, a2, ...], where the terms a0, a1, a2, ... are called the partial quotients

of the continued fraction [3, p. 6]. A finite simple continued fraction has only a finite number of terms

a0, a1, ..., an−1, and it can be compactly written as [a0, a1, ..., an−1]. Such a fraction is also called a

terminating continued fraction. It can be proven that every rational number can be expressed as a finite

simple continued fraction [3, p. 14, Theorem 1.1].

Example 1.1.1 The following is an example of a finite continued fraction

67

29
= 2 +

1

3 + 1
4+ 1

2

= [2, 3, 4, 2].

The above result can be obtained through the following algorithm: First we divide 67 by 29 to get the

quotient 2 and the remainder 9, so that

67

29
= 2 +

9

29
= 2 +

1
29
9

.

Next, we replace 9
29 by the reciprocal of 29

9 so we get the numerator 1. Then, we divide 29 by 9 to obtain

29

9
= 3 +

2

9
= 3 +

1
9
2

.

Finally, we divite 9 by 2 to obtain

9

2
= 4 +

1

2

at which point the process ends. Putting the equations above together we get

67

29
= 2 +

1
29
9

= 2 +
1

3 + 1
9
2

= 2 +
1

3 + 1
4+ 1

2

,
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or

67

29
= [2, 3, 4, 2].

1.2 Non-simple Continued Fractions

Simple continued fractions were studied at great length by mathematicians of the seventeenth and eigh-

teenth centuries and are a subject of active investigation today. However, not much attention has been

given to non-simple continued fractions. The difference between simple and non-simple continued frac-

tions is that at least one of numerators of a non-simple continued fraction must be a real number different

from 1. Non-simple continued fractions can, therefore, be generally expressed in the following manner:

x = a0 +
b1

a1 + b2
a2+

b3

a3+
b4
...

, for at least one bi 6= 1. (1.2.1)

In this monograph, however, we shall restrict our discussion to the case when all b’s are equal to a real

number z. We, therefore, investigate continued fractions of the form

x = a0 +
z

a1 + z
a2+

z
a3+ z

...

, z 6= 1, (1.2.2)

where a0 is an interger, aj , for j > 0, are positive integers and z is a real number. We shall use a more

compact form to write (1.2.2):

x = [a0, a1, a2, a3, ...]z.

A paper by Maxwell Anselm and Steven Weintraub [1] investigated this generalization when z is

replaced by an arbitrary positive integer other than 1. Another paper by Jesse Schmieg [4] generalized

further to the case of an arbitrary real number z ≥ 1. He mainly focused on the case where z is rational

but not an integer, especially when x, the number to be expanded, is also rational.

In order to generate continued fractions or expand a number into continued fractions, we use the

continued fraction algorithm. This algorithm takes two parameters, namely a fixed real number z and

a real number x, which is the number to be expanded. The output is a list [a0, a1, a2...] which satisfies

the relation in (1.2.2). There is a few ways of finding numbers a0, a1, a2..., but here we use the following

approach: we let x = x0 and recursively do the expansion as follows:

x = a0 +
z

x1
= a0 +

z

a1 + z
x2

= ....

We let a0 = bx0c and solve for x1: x1 = z
x0−a0 . We then iterate this process: a1 = bx1c, x2 = z

x1−a1 ,

and so on. If it were to happen that xn is an integer for some n, then an = xn, and the algorithm would

stop. Otherwise it continues indefintely.
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Example 1.2.1 Expansion of x = 3
2 with z =

√
2

x0 =
3

2
, a0 = 1, → x1 =

√
2

3
2 − 1

= 2
√

2, a1 = 2, →

x2 =

√
2

s
√

2− 2
=

2 +
√

2

2
, a2 = 1 → x3 =

√
2

2+
√
2

2 − 1
=

2
√

2√
2

= 2, a3 = 2.

This expansion is finite, and the algorithm outputs a = [a0, a1, a2, a3] = [1, 2, 1, 2]. Alternatively, we can

have both the number being expanded and z be fractional numbers.

Example 1.2.2 Expansion of 20
7 with z = 3

2 .

20

7
= 2 +

6

7
= 2 +

3/2
7
4

= 2 +
3/2

1 + 3/2
2

,

so 20
7 = [2, 1, 2]3/2, which is a finite expansion.

The expansions above are both finite, but one of the most interesting characteristics of continued

fractions arguably is the fact that their expansions can be periodic.

Example 1.2.3 We derive the expansion of x =
√

2 and z = 3
2 .

a0 = 1, x1 =
3/2

x0 − a0
=

3/2√
2− 1

=
3/2(
√

2 + 1)

2− 1
=

3
√

2 + 3

2
.

Next, a1 = bx1c = 3 and

x2 =
3/2

3
√
2+3
2 − 3

=
3

3
√

2− 3
=

1√
2− 1

=
√

2 + 1.

Then, a2 = bx2c = 2 and x3 = 3/2√
2−1 = 3

√
2+3
2 = x1. This means that we get periodic behavior: the x’s

follow the pattern [
√

2, 3
√
2+3
2 ,
√

2 + 1, 3
√
2+3
2 ,
√

2 + 1, ...], and the a’s follow the pattern [1, 3, 2, 3, 2, 3, ...].

We can also write it as
√

2 = [1, 3, 2] 3
2

and say that the expansion is periodic with period length 2.

Furthermore, the special case of purely periodic behavior with period 1 is especially nice. If we, for

example, start off with an equation of the form x2 − bx − z = 0 then x = b + z
x , which means x has a

purely periodic z-expansion with period length 1.

Example 1.2.4 We find approximations to the positive solution to x2 + 3x − 7 = 0. First, we need to

make this quadratic equation take the form x2 − bx − c = 0 for |b| >= |c|. If we let x = y − 4, then we

get y2 − 5y − 3 = 0, so y = 5 + 3
y leads to an expasion for y with z = 3.

y = 5 +
3

y
= 5 +

3

5 + 3
y

= 5 +
3

5 + 3
5+ 3

...

or y = [5, 5, 5, ...]3.
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If we subtract 4, we get

x = [1, 5, 5, ...]3 or x = [1, 5]3.

The above leads to approximate solutions

1, 1 +
3

5
= 1.6, 1 +

3

5 + 3
5

= 1.53571..., 1 +
3

5 + 3
5+ 3

5

= 1.54194..., . . .

which approach the exact solution 1.54138... .

As discussed above, continued fractions can have three kinds of expansions: finite expansions, periodic

expansions or infinite non-periodic expansions. Different values of x and z will give different kinds of

expansions. However, from this point on, we shall mainly focus on the cases when the number to be

expanded is a fraction and z is a radical, investigating periodic behaviors with various period lengths.

The kind of non-simple continued fractions that we shall discuss can, therefore, be generally expressed

in the following way:

x = a0 +

√
n

a1 +
√
n

a2+
√

n

a3+

√
n

...

.

As we shall demonstrate in subsequent sections, non-simple continued fractions with the above char-

acteristics can produce the three kinds of expansions; however, we give especial attention to periodic

expansions.

2 Periodic Results

2.1 General Results

We start by formally defining a recursive algorithm for computing continued fractions with real numerators

and verifying that the algorithm gives successful results.

Definition. Given x ∈ R and z ∈ R with z ≥ 1, choose sequences (xj) and (aj) by

x0 = x, aj = bxjc , xj+1 =
z

xj − aj
,

for j = 0, 1, 2, ..., and terminating when xj is an interger. This creates the expansion

x = [a0, a1, a2, ..., aj ]z, (2.1.1)

if the expansion terminates. Otherwise, we write

x = [a0, a1, a2, ...]z. (2.1.2)
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The above is called the maximal expansion of x with respect to z.

Theorem 2.1.1. If x is a noninteger real number, then it has an expansion x = [a0, a1, ..., ak, xk+1]z,

for all k ≥ 0 for which the expression is valid.

Proof. We proceed by induction. It is clear that x = [x] = [x0]. We assume x has an expansion

[a0, ..., ak−1, xk]z. If xk is not an integer, then xk+1 = z
xk−ak . This can be rewritten as xk = ak + z

xk+1
=

[ak, xk+1], where ak = bxkc. Therefore, x = [a0, ..., ak−1, xk]z = [a0, a1, ..., ak, xk+1]z.

Theorem 2.1.2. If x has maximal expansion [a0, a1, ...], then for all k = 0, 1, 2, ..., xk = [ak, ak+1, ...].

Proof. We let y = xk and, if xk is not an integer, then y has an expansion [b0, b1, b2, ...]. Notice that

y = y0 = xk, y1 = xk+1, ... . Therefore, b0 = by0c = bxkc = ak, b1 = by1c = bxk+1c = ak+1, and so

on.

Theorem 2.1.3. If x has an expansion x = [a0, a1, ..., ak−1, ...]z, then ak ≥ bzc for all k > 0, and if the

expansion is finite, x = [a0, a1, ..., ak]z, then the final partial quotient satisfies ak > z.

Proof. We assume that k > 0, so we have ak−1 = bxk−1c, which means 0 < xk−1 − ak−1 < 1. Conse-

quently, xk = z
xk−1−ak−1

> z. Since ak = bxkc, and xk > z, it must be that ak ≥ bzc. If x has a finite

expansion, then xk must be an integer, which means ak = bxkc = xk > z.

2.2 Periodicity

As mentioned earlier, some continued fraction expansions eventually become periodic. In this section, we

go into further detail about periodic bahaviors and find interesting results. Periodic continued fraction

expansions consist of a leading tail and a period, both of which can vary in length. If an expansion is

periodic with period n and tail length k, then it has the form

[a0, a1, ..., ak−1, ak, ak+1, ..., ak+n−1]z (2.2.1)

with the part under the line repeating indefinitely. Periodicity can be proven, as demonstrated next.

Example 2.1.1 We use the continued fraction algorithm, as described in section 2.1, to compute the

continued fraction expansion of 3
2 with z =

√
8. We first set x0 = 3

2 , and then calculate the floor function

a0 of x0, so we obtain

x0 = a0 +
z

x1
=

3

2
= 1 +

√
8

x1
.

We then recursively continue expanding

x1 = 4
√

2, a1 = 5 → x2 =
2

7
(8 + 5

√
2), a2 = 4 → x3 = 5 + 3

√
2, a3 = 9 →
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x4 = 6 + 4
√

2, a4 = 11 → x5 =
2

7
(8 + 5

√
2), a5 = 4.

At this point, we are able to prove periodicity. Notice that x2 and x5 are equal, which means the term

2
7 (8 + 5

√
2) reappears in the (xn) sequence, and therefore, the steps will repeat from that point forward,

causing period length 3. Indeed, 3
2 = [1, 5, 4, 9, 11]√8. In general, we can say that x will have periodic

behavior if and only if xi = xj for some i < j. See Theorem 3.1.1 for a proof.

Remark. In this research, we use Floyd’s Cycle Finding Algorithm to find periods and compute their

lengths, as described in the appendix.

2.3 Search for Periodic Behavior

Using the algorithm defined in setion 2.1, we searched for periodic behaviors in expansions of various

rational values with different values of n, for z =
√
n. We used the following approach to define these

values: x, which is the value to be expanded, is a fraction x = u
v such that u and v are integers, where

v ranges from 2 to 500, and u ranges from v + 1 to 2v − 1 and is relatively prime to v. The reason

for the constraint on u is that if y = x + k, where k is a positive integer, and if x = [a0, a1, a2, a3, ...],

then y = [a0 + k, a1, a2, a3, ...]. That is to say, if two numbers differ by an integer, their expansions are

identical except for a0. Consequently, they will have the same period, if they are periodic, and both will

have finite expansions, if either one of them does. This means it is unnecessary to look at, for instance,

the expansion of 19/7 if we have already investigated the expansions of 12/7 = [1, 3, 2, 2, 2, 3, ...]√8 or

5/7 = [0, 3, 2, 2, 2, 3, ...]√8. Hence, we arbitrarily fix a0 to be 1, which means we need 1 ≤ u
v ≤ 2, and

therefore v + 1 ≤ u ≤ 2v − 1. With this constraint applied, we expanded fractions u
v for each value of z

=
√
n for n < 100 (excluding those that are perfect squares).

The two tables below summarize the result of our search. The first table is ordered by the length of

the periods found. Its first column indicates the length of the periods, and its second column indicates

the values of n (for z =
√
n) used when doing the expansions. The second table provides the same

information but ordered by the values of n in which we found periodic behavior.

Table 2.3.1: Ordered by period length

length n
0 2, 3, 5, 6, 7, 8, 12
1 2, 6, 12, 32, 60, 96
2 3, 8, 15, 24, 35, 48, 63, 80, 99
3 8
4 5
6 2, 8
8 3
12 3
13 12
15 6
22 10
72 3
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Table 2.3.2: Ordered by n

n length
2 0, 1, 6
3 0, 2, 8, 12, 72
5 0, 4
6 0, 1, 15
7 0
8 0, 2, 3, 6
10 22
12 0, 1, 13

15, 24 2
32 1

35, 48 2
60 1

63, 80 2
96 1
99 2

Remark. Period length 0 indicates that the expansion is terminating.

Some of the most stricking results we found were regarding the shape of the periods in the periodic

expansions. Although we expanded a great number of rationals for various values of n, we only discuss in

detail the cases of n where all rationals had either a finite or periodic expansion. We start by discussing

expansions for n = 2. In this case, each period length presented only one kind of pattern. For instance,

we expanded a total of 76115 rationals, 27% of which presented periodic behavior with period length 1,

and all of them surprisingly became periodic with the number 3. That is to say, their expansions had the

following form: x = [a0, a1, ..., ak−1, 3]√2, for some k > 0. The same was true for periodic expansions with

period length 6, which only presented cyclic permutations of the period [10, 19, 4, 3, 3, 17]. The following

is a table summarizing the frequency of each period length in expansions for n = 2:

Table 2.3.3: Frequency of period lengths for n = 2

period length frequency
0 55056
1 21052
6 7

Next, we discuss expansions for n = 3. In this case, if we disregard permutations, periods also pre-

sented only one unique form. For instance, periodic expansions with period length 2 consisted of 42% of

the expanded rationals, and all of them had cycles [2, 4] or [4, 2]. Similarly, periodic expansions with period

length 72 all had cyclic permutations of the following cycle: [20, 65, 1, 1, 1, 1, 1, 2, 248, 5, 24, 2, 7, 19, 4, 8,

4, 3, 2, 14, 3, 49, 2, 9, 2, 3, 1, 2, 5, 5, 3, 8, 5, 2, 96, 7, 40, 20, 5, 3, 2, 5, 4, 2, 21, 2, 8, 4, 4, 12, 3, 9, 6, 2, 35, 10, 2, 4, 2, 3,

22, 1, 2, 6, 25, 2, 2, 3, 1, 2, 8, 2, 20]. In fact, all permutations of periods we found were only cyclic permu-

tations. The following is a table summarizing the frequency of each period length in expansions for

n = 3:
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Table 2.3.4: Frequency of period lengths for n = 3

period length frequency
0 14287
2 31641
8 57
12 1394
72 28736

Expansions for n = 6 are remarkable as well. In this case, periodic expansions with period length

1 accounted for 72% of the expanded rationals, and all of them had cycle [5]. Furthermore, only two

rationals, namely 98/81 and 283/196, presented the period [3, 79, 2, 4, 15, 5, 3, 7, 2, 5, 6, 13, 6, 3, 8], which

has length 15. The remaining rationals had finite expansions. The following is a table summarizing the

frequency of each period length in expansions for n = 6:

Table 2.3.5: Frequency of period lengths for n = 6

period length frequency
0 3514
1 8715
15 2

For most values of n, very few expanded rationals appeared to be periodic or finite within the limits

of our search. However, a small number of these n’s led to a significant number of periodic expansions.

The following tables show lengths of periods that came up in expansions for each of these values of n, as

well as their frequencies.

Table 2.3.6: Frequency of period lengths for n = 8

period length frequency
0 36
2 495
3 99
6 1

other 2761

Table 2.3.7: Frequency of period lengths for n = 12

period length frequency
0 99
1 219
13 37

other 11876

Here, “other” means that the search results were inconclusive. That is to say, we could not determine

whether or not the expansion was terminating or periodic. The reason for this might lie upon the deepness

of our search. We searched 500 steps deep for n < 4, 200 steps deep for 3 < n < 8 and 100 steps deep for

the rest. A deeper search for each n might have given different results.

10



For n = 5, almost all expansions appeared to be infinite and non-periodic. The exceptions being

344/321 and 521/356, both of which presented periodic expansions with length 4 and tails 11 and 24,

respectively, and 26 other rationals, which had finite expansions. As we shall see in the next table, as n

gets larger, we find less and less periodic behavior, and the distance between the n’s that present period

bahavior increases more and more.

We next give a table that displays the following three counts: terminating expansions, periodic ex-

pansions and “other” for each n on Table 2.3.2. Please, notice that we expanded rationals for all n < 100

that were not perfect squares, but only those listed on Table 2.3.8 had periodic behavior. For all the

other values of n, for example when n = 11, there were no rationals that had either finite expansions or

expansions that became periodic within the bounds of our search.

Table 2.3.8: Overall frequency for each n on Table 2.3.2

n terminating expansions periodic expansions other total
2 55056 21059 0 76115
3 14287 61828 0 76115
5 26 2 76087 76115
6 3514 8717 0 12231
7 1 0 12230 12231
8 36 595 11600 12231
10 0 6 12225 12231
12 99 256 11876 12231
15 0 1 3042 3043

24, 32 0 2 3041 3043
35, 48 0 1 3042 3043

60 0 2 3041 3043
63, 80 0 1 3042 3043

96 0 2 3041 3043
99 0 1 3042 3043

Up to this point, we have only discussed period lengths, but we would like to conclude this section by

providing some data on finite expansions as well as tail lengths. The following are two tables: the first

gives the number of rationals that led to finite expansions with each length ≤ 10, and the second gives

the number of rationals that led to periodic expansions with each tail length ≤ 10, both of which limited

to the bounds and deepness of our search:

Table 2.3.9: Number of expansions x finite expansion lengths

length 4 5 6 7 8 9 10
number of expansions 2 6 8 15 31 40 49

Table 2.3.10: Number of expansions x tail lengths

tail length 2 3 4 5 6 7 8 9 10
number of expansions 5 5 1 10 21 26 29 46 86
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3 Purely Periodic Expansions

3.1 Expansion into Quadratic Surds

In the previous chapter, we mentioned that, when n=2, all periodic expansions with period length 1 had

the form x = [a0, a1, ..., aj−1, 3, 3, 3, ...] for some interger j > 0. Since x has an expansion as in formula

(2.2.1), we can say xj is purely periodic, based on Theorem 2.1.2. This led us to the investigation of real

numbers with purely periodic expansions.

Example 3.1.1 We show the values that x assume through the expansions x = [3, 3, 3, ...] and x =

[4, 4, 4, ...] in the case with n = 2.

By Theorem 2.1.1, we have x = [3, x] or x = 3 +
√
2
x . This leads to x = 2 +

√
2, which is purely

periodic with expansion [3, 3, ...]. On the other hand, if x = [4, 4, 4, ...] or x = [4, x], then x = 4 +
√
2
x ,

and thus x = 2 +
√

4 +
√

2, which is an expression with nested radicals that cannot be simplified.

Now it is worth giving the definition of quadratic surd.

Definition. A number of the form
√
a, where a is a positive rational number which is not the square of

another rational number is called a pure quadratic surd. A number of the form a+
√
b, where a is rational

and
√
b is a pure quadratic surd is sometimes called a mixed quadratic surd [2, p. 20]. A quadratic surd is

also an irrational number that is the solution to some quadratic equation whose coefficients are integers,

and can therefore be expressed as

a+ b
√
c

d
,

for integers a, b, c, d; with b, c and d non-zero, and with c square-free.

Theorem 3.1.1. if x is rational, then every xk is either rational or an irrational quadratic surd.

Proof. Assuming that we start with x being rational, by way of induction there are two cases for subse-

quent values of x:

Case 1: Suppose xj is rational. If xj is an integer, we are done. Otherwise, xj = u/v for some u and v,

relatively prime, and, therefore, xj+1 =
√
n

xj−aj = v
√
n

u−ajv = v
√
n
d for d = u−ajv, which is a quadratic surd.

Case 2: If xj is a quadratic surd, then we may assume xj = b+c
√
n

d for integers b, c, d, so then

xj+1 =
√
n

xj−aj =
√
n

b+c
√

n
d −aj

= d
√
n

b−ajd+c
√
n

. Now, If b− ajd = 0, then xj+1 is a rational: xj+1 = d/c. Note

that c is not 0 by the assumption that xj is a surd. On the other hand, if b−ajd is not 0, we let e = b−ad,

getting xj+1 = −cdn+de
√
n

e2−c2n . Next, we let f = −cdn, g = de and h = e2 − c2n to obtain xj+1 = f+g
√
n

h ,

which is a quadratic surd.

As a consequence of Theorem 2.2.2, if a real number x has an eventually periodic expansion, then

some xk will have a purely periodic expansion. Since we are interested in expansions of rational x, by

Theorem 3.2.1, this xk must be a quadratic surd. However, in Example 3.1.1, we showed that not all xk

that give a periodic expansion is a rational or a quadratic surd. This naturally led us to the question
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“Which quadratic surds can have purely periodic behavior?”. This question is probably too hard to tackle

directly. However, we shall show how to answer it for periods of small length, especially lengths 1 and 2,

which were the ones that came up the most in Table 2.3.1.

3.2 Period Length 1

We now turn our attention to understanding purely periodic expansions with short periods. If an expan-

sion is purely periodic with period length 1, then it has the following form

x = d+

√
n

x
. (3.2.1)

We can solve for x to get

x =
d+

√
d2 + 4

√
n

2
. (3.2.2)

By Theorem 3.1.1, the x in formula (3.2.2) must be either rational or a quadratic surd. Consequently,

the nested radicals must simplify. The only way this can happen is if d2 + 4
√
n is a perfect square. Thus,

we write

d2 + 4
√
n = (u+ v

√
n)2,

or

d2 + 4
√
n = u2 + nv2 + 2uv

√
n,

so we must have

u2 + nv2 = d2 and 2uv = 4.

Therefore, we have two cases: first we might have u = 1 and v = 2, which gives

d2 = 1 + 4n. (3.2.3)

Alternatively, if u = 2 and v = 1 then

d2 = 4 + n. (3.2.4)

Now, we first find solutions to (3.2.3). We need d to be odd, so we set d = 2k+1. Solving for n, we get

n = k2 + k. This means that (d, n) has to have the form (2k + 1, k2 + k) for some positive integer k.

Similarly, we find solutions to (3.2.4). However, in this case, d can be odd or even. If d is odd, then we

have d = 2k + 1. Solving for n, we get n = 4k2 + 4k − 3. This means that (d, n) has to have the form

(2k + 1, 4k2 + 4k − 3) for some positive integer k. On the other hand, if d is even, then we have d = 2k.

Solving for n, we get n = 4k2 − 4. This means that (d, n) has to have the form (2k, 4k2 − 4) for some

positive integer k. As a result, we have three families of solutions to n.
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Theorem 3.2.1. There are infinitely many quadratic surds that can be expanded into purely periodic

expansions with period length 1.

Proof. We proceed with a direct proof and with the conditions in case (3.2.3). We need d = 2k + 1 and

d2 + 4
√
n = (1 + 2

√
n)2, with n = k2 + k. Thus, we have

x =
2k + 1 + 1 + 2

√
k2 + k

2
= k + 1 +

√
k2 + k.

Now that we have found a description for x, we show it can actually be expanded into a period expansion

with period 1. If we run our continued fraction algorithm, we have

a0 = bx0c = bxc =
⌊
k + 1 +

√
k2 + k

⌋
.

Notice that
√
k2 + k + k + 1 =

√
k2 + 2k + 1 =

√
(k + 1)2 = k + 1. Hence, k <

√
k2 + k < k + 1, and

then we can say ⌊
k + 1 +

√
k2 + k

⌋
= bk + 1 + k + λc ,

where 0 < λ < 1. Therefore,

a0 = bx0c = bk + 1 + k + λc = 2k + 1.

For the next step, we have

x1 =
z

x0 − a0
=

√
k2 + k

(k + 1 +
√
k2 + k)− (2k + 1)

=
k2 + k + k

√
k2 + k

k2 + k − k2
= k + 1 +

√
k2 + k.

Since x1 = x0, the expansion is purely period with period length 1. Therefore, using our compact

continued fraction symbol, for every positive integer k, we have

k + 1 +
√
k2 + k = [2k + 1, 2k + 1, 2k + 1, ...] = [2k + 1].

For the case in (3.2.4), if d is odd, we need d = 2k+ 1 and d2 + 4
√
n = (2 +

√
n)2, with n = 4k2 + 4k− 3.

Thus, we have

x =
2k + 3 +

√
4k2 + 4k − 3

2
= [2k + 1, 2k + 1, 2k + 1, ...] = [2k + 1].

Here we again show that x can actually be expanded into a period expansion with period 1. If we

run our continued fraction algorithm, we have a0 = bx0c = bxc =
⌊
2k+3+

√
4k2+4k−3
2

⌋
. Notice that

√
4k2 + 4k − 3 + 4 =

√
4k2 + 4k + 1 =

√
(2k + 1)2 = 2k+ 1, which means 2k <

√
4k2 + 4k − 3 < 2k+ 1,
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and then we can write

a0 =

⌊
2k + 1 + 2 + 2k + λ

2

⌋
,

where 0 < λ < 1. Thus, we have

a0 =

⌊
2k + 1 +

1 + λ

2

⌋
.

Since 0 < λ
2 <

1
2 , we can say

a0 =

⌊
2k + 1 +

1 + λ

2

⌋
= 2k + 1.

For the next step of the algorithm, we have

x1 =
z

x0 − a0
=

√
4k2 + 4k − 3

2k+1+2+
√
4k2+4k−3

2 − (2k + 1)
=

(1− 2k)
√

4k2 + 4k − 3− (4k2 + 4k − 3)

2(1− 2k)
=

√
4k2 + 4k − 3

2
+
−[(1− 2k)2 + 4(1− 2k)]

2(1− 2k)
=

2k + 3 +
√

4k2 + 4k − 3

2
.

Since x1 = x0, the expansion is purely period with period length 1. On the other hand, if d is even, we

need d = 2k and d2 + 4
√
n = (2 +

√
n)2, with n = 4k2 − 4. Thus, we have

x = k + 1 +
√
k2 − 1 = [2k, 2k, 2k, ...] = [2k].

We finally demonstrate once again that x can actually be expanded into a period expansion with period

1 in this case as well. If we run our continued fraction algorithm, we have

a0 = bx0c = bxc =
⌊
k + 1 +

√
k2 − 1

⌋
.

Notice that
√
k2 − 2k − 1 + 2 =

√
k2 − 2k + 1 =

√
(k − 1)2 = k − 1, which means k − 1 <

√
k2 − 1 < k,

and so, we can write a0 = bk + 1 + k − 1 + λc , where 0 < λ < 1. Thus, we have a0 = 2k. For the next

step of the algorithm, we have

x1 =
z

x0 − a0
=

2
√
k2 − 1

k + 1 +
√
k2 − 1− 2k

=
2(1− k)

√
k2 − 1 + 2(1− k)(k + 1)

2(1− k)
= k+1+

√
k2 − 1. (3.2.5)

Notice that x1 = x0, which means the expansion is purely period with period length 1. To summarize,

the quadratic surds with purely periodic behavior with period 1 are

k + 1 +
√
k2 + k = [2k + 1]√n, with n = k2 + k and k ≥ 1, (3.2.6)

2k + 3 +
√

4k2 + 4k − 3

2
= [2k + 1]√n, with n = 4k2 + 4k − 3 and k ≥ 1, (3.2.7)
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and

x = k + 1 +
√
k2 − 1 = [2k]√n, with n = 4k2 − 4 and k ≥ 2. (3.2.8)

By Theorem 3.2.1, a rational x with an eventually periodic expansion of period 1 has some xj of the

type given in equations (3.2.6), (3.2.7) or (3.2.8). This means that not all values of n can give periodic

expansions of period 1, but only those of the forms given in these three equations. However, even among

the allowable values of n, we could not find examples for every one of them in our search, as it can be

seen next.

We use equations in (3.2.6), (3.2.7) or (3.2.8) to obtain all the allowable values of n < 100 and, if

applicable, we give an example of a rational x that gives a periodic expansion with period length 1 using

such a value of n.

Table 3.2.1: n = k2 + k

n example

2 x = 9
5

6 x = 3
2

12 not found

20 not found

30 not found

42 not found

56 not found

72 not found

90 not found

Table 3.2.2: n = 4k2 + 4k − 3

n example

5 not found

21 not found

45 not found

77 not found

Table 3.2.3: n = 4k2 − 4

n example

12 x = 3
2 ,

8
7

32 x = 4
3 ,

18
17

60 x = 5
4 ,

32
31

96 x = 6
5 ,

50
49

Notice that 12 appears twice: first on Table 3.2.1, and again on Table 3.2.3. The reason for this is

because 12 is given by two families of solutions, namely k2 + k with k = 3 and 4k2 − 4 with k = 2, but

they present different periodic behaviors: 4+
√

12 = [7, 7, 7, ...] and 3+
√

3 = [4, 4, 4, ...]. However, during

our search for periodic behaviors with n=12, the only pattern that showed up was [a0, a1, ..., aj , 4, 4, 4, ...].

We could not find a single expansion with period of 7’s rather than 4’s.

Another interesting point to notice is that, in the previous section, we mentioned that all periodic

expansions with period length 1 and with z =
√

2 became periodic with the number 3. It turns out that

this result is expected. If we use the equation n = k2+k with k = 1 then n = 2. In this case, d = 2k+1 = 3.

Now if we replace both n and d into equation (3.2.6), we get x = k + 1 +
√
k2 + k = 2 +

√
2, which, also

in accordance with our search results, is the number that caused the periodic expansions [3, 3, 3, ...] when

z =
√

2.

Additionally, Table 3.2.3 gives us a very special pattern which helps us connect equation (3.2.8)
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back to rationals. Notice that n = 12, 32, 60, 96 all come from the formula 4k2 − 4 with k = 2, 3, 4, 5,

respectively. The smallest rational that generates an expansion with each of these n are, 3/2, 4/3, 5/4

and 6/5, respectively. Furthermore, each expansion becomes periodic when x = 3 +
√

3, 4 +
√

8, 5 +
√

15

and 6 +
√

24, respectively, and all of them have tail length 3. Therefore, we shall hypothesize that k+1
k

generates a periodic expansion with period length 1, k+1
k = [1, a1, a2, 2k, 2k, 2k. . . ].

Theorem 3.2.2. Every rational number of the form k+1
k , for k > 1, has a continued fraction expansion

of the form k+1
k = [1, 2k2 − 2, 2k − 1, 2k, 2k, 2k, ...]z, where z =

√
4k2 − 4.

Proof. We proceed with a direct proof by expanding k+1
k . First we say x0 = x = k+1

k and calculate

a0 =
⌊
k+1
k

⌋
=
⌊
1 + 1

k

⌋
. Since k > 1, a0 = 1. Now, we calculate

x1 =
z

x0 − a0
=

√
4k2 − 4
k+1
k − 1

= 2k
√
k2 − 1.

For the second step, we have a1 =
⌊
2k
√
k2 − 1

⌋
=
⌊√

4k4 − 4k2
⌋
. Notice that

√
4k4 − 4k2 + 1 =√

(2k2 − 1)2 = 2k2 − 1, and that
√

4k4 − 4k2 − 4k2 + 4 =
√

4k4 − 8k2 + 4 =
√

(2k2 − 2)2 = 2k2 − 2,

which means 2k2 − 2 <
√

4k4 − 4k2 < 2k2 − 1. Hence, a1 = 2k2 − 2. Next, we calculate

x2 =
z

x1 − a1
=

√
4k2 − 4

(2k
√
k2 − 1)− (2k2 − 2)

=

√
k2 − 1

1− k2 + k
√
−1 + k2

= k +
√
k2 − 1.

Please, refer to (3.2.5) for the calculations of the third step. We have

x3 = k + 1 +
√
k2 − 1.

Notice that the above is equal to the result in (3.2.8), which means ak = 2k for all k > 2, and therefore,

the expasion of k+1
k is purely periodic with period length 1.

Similarly, Table 3.2.3 gives us another pattern: for each n=12, 32, 60 and 96, we found another fraction

with periodic expansion, namely, 8
7 ,

18
17 ,

32
31 ,

50
49 , respectively. Thus, we have the following theorem:

Theorem 3.2.3. Every rational number of the form 2k2

2k2−1 , for k > 1, has a continued fraction expansion

of the form 2k2

2k2−1 = [1, 4k3 − 4k, 4k2 − 3, 2k − 1, 2k, 2k, 2k, ...]z, where z =
√

4k2 − 4.

Proof. We proceed with a direct proof by expanding 2k2

2k2−1 . First we say x0 = x = 2k2

2k2−1 = 1
1− 1

2k2
.

Since k > 1, 2k2 ≥ 8, and so 1 < x0 < 2. This means a0 = bx0c = 1 for all k > 1. Now, we calculate

x1 = z
x0−a0 = (2k2−1)

√
4k2 − 4 =

√
16k6 − 32k4 + 20k2 − 4. Notice that 16k6−32k4+16k2 = (4k3−4k)2

and 16k6−32k4+8k3+16k2−8k+1 = (4k3−4k+1)2, which means 4k3−4k <
√

16k6 − 32k4 + 20k2 − 4 <

4k3−4k+1, and so a1 = bx1c = 4k3−4k. After some algebra, we have x2 = z
x1−a1 =

√
4k4 − 4k2+2k2−1.

Since 2k2 − 2 <
√

4k4 − 4k2 + 2k2 − 1 < 2k2 − 1, a2 = bx2c = 2k2 − 2 + 2k2 − 1 = 4k2 − 3 . Then,

x3 = z
x2−a2 = k +

√
k2 − 1. Since k − 1 <

√
k2 − 1 < k, a3 = bx3c = k − 1 + k = 2k − 1. Once again,
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x4 = z
x3−a3 , which, after some algebra, gives x4 = k+1+

√
k2 − 1. Thus, a4 = bx4c = k−1+k+1 = 2k.

Finally, x5 = z
x4−a4 =

√
−4+4k2

1−k+
√
−1+k2 = k + 1 +

√
k2 − 1. Since x5 = x4, ak = 2k for all k > 3, and

therefore, the expasion of 2k2

2k2−1 is purely periodic with period length 1.

3.3 Period Length 2

If x is purely periodic with period 2, then x has an expansion of the form [d, e, d, e, ...] and so, by Theorem

2.1.2, x = x2, which means

x = d+

√
n

e+
√
n
x

. (3.3.1)

We can solve for x to get

x =
de+

√
d2e2 + 4de

√
n

2e
. (3.3.2)

Most of the time, the expression in (3.3.2) will not be a quadratic surd. For example, if d = 3, e = 4, n = 5,

then x = 3+
√

9+3
√
5

4 . However, we are interested in an x which represents an xj in the expansion of a

rational number. This means we want the expression in (3.3.2) to be a quadratic surd. The only way

this can happen is if d2e2 + 4de
√
n is a perfect square. Thus, we write

d2e2 + 4de
√
n = (u+ v

√
n)2,

or

d2e2 + 4de
√
n = u2 + nv2 + 2uv

√
n,

so we must have

u2 + nv2 = d2e2 and uv = 2de.

This means de = uv/2, and so

u2 + nv2 =
u2v2

4
,

or

u2 = 4n+
16n

v2 − 4
. (3.3.3)

Theorem 3.3.1. For any given n, there are at most finitely many purely periodic quadratic surds of

period 2.

Proof. As we derived above, we need u2 = 4n + 16n
v2−4 . Notice that v2 − 4 must be at most as large as

16n, which means only a finite number of v can work, and for each v, at most one u. Given a u and a v,

by (3.3.2), we must have x = de+u+v
√
n

2e .

For n < 100, there are 26 allowable values of n, that is to say, numbers n for which we could find

solutions u and v in (3.3.3). The following is a table displaying such values of n and their respective u, v,
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d, e and x solutions. Notice that, for each pair of solutions u and v, one can always get the permutations

(d, e) and (e, d). However, if x = x0 has periodic expansion [d, e], then so does every xk with k even, and

every xk with k odd has expansion [e, d], which means it is not necessary to have both (d, e) and (e, d).

For this reason, we only list solutions for which e ≤ d, though when d = e, the resulting x has period 1

rather than period 2. Moreover, we are only interested in maximal expansions, so, by Theorem 2.1.3, we

rule out solutions that do not have b
√
nc ≤ e ≤ d.

Table 3.3.1: Allowable values of n in equation (3.3.3)

n u v list of (d, e) and x values

2 3 6 (3,3) x = 2 +
√

2 , (9,1)* x = 6 + 4
√

2

3 4 4 (4,2) x = 3 +
√

3 , (8,1)* x = 6 + 2
√

3

5 6 3 (3,3) x = 5+
√
5

2

6 5 10 (5,5) x = 3 +
√

6

8 6 6 (6,3) x = 4 +
√

8 , (9,2)* x = 3(2 +
√

2)

12 8 4 (4,4) x = 6+
√
12

2

12 7 14 (7,7) x = 4 +
√

12

15 8 8 (8,4) x = 5 +
√

15

20 9 18 (9,9) x = 5 +
√

20

21 10 5 (5,5) x = 7+
√
21

2

24 10 10 (10,5) x = 6 +
√

24

30 11 22 (11,11) x = 6 +
√

30

32 12 6 (6,6) x = 8+
√
32

2

35 12 12 (9,8) x = 21+3
√
35

4 , (12,6) x = 7 +
√

35

42 13 26 (13,13) x = 7 +
√

42

45 14 7 (7,7) x = 9+
√
45

2

48 14 14 (14,7) x = 8 +
√

48

56 15 30 (15,15) x = 8 +
√

56 , (25,9) x = 40+5
√
56

3

60 16 8 (8,8) x = 10+
√
60

2

63 16 16 (16,8) x = 9 +
√

63

72 17 34 (17,17) x = 9 +
√

72

77 18 9 (9,9) x = 11+
√
77

2

80 18 18 (18,9) x = 10 +
√

80

90 19 38 (19,19) x = 10 +
√

90

96 20 10 (10,10) x = 12+
√
96

2

99 20 20 (20,10) x = 11 +
√

99

Remark. the asterisk, *, indicates that the x does not have the desired maximal expansion.

However, not all values of n in Table 3.3.1 lead to a quadratic surd with period 2. For example, with
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n = 6, we have 2de = uv = 50, so de = 25. This has three solutions (d, e) : (1, 25), (5, 5), (25, 1). If

d = 5 = e, then we have period 1, not period 2. Furthermore, the other two cases cannot happen with

the maximal expansion, because, by Theorem 2.1.3, we need d and e to be at least as large as
⌊√

5
⌋

= 2,

so we cannot have d = 1 or e = 1. Thus, it is not possible to obtain any periodic behavior with length 2

from n = 6.

Even if n has a quadratic surd with period 2, we are not guaranteed to be able to find a rational

x that leads to a periodic expansion with period 2. For example, the quadratic surds marked with an

asterisk: x = 6 + 4
√

2 and x = 6 + 2
√

3, for n = 2 and n = 3, respectively, give unexpected expansions.

The former has expansion [10, 5, 1, 2, 2] and latter has expansion [9, 3, 2, 4, 2, 4, ....]. However, they were

supposed to give purely period expansions with periods [9, 1] and [8, 1], respectively. While the latter

does have a periodic expansion, it is not pure and does not have period [8, 1], and the former is not even

periodic.

According to our search, among all the values of n on Table 3.3.1, only the following actually have

rationals whose expansion is periodic with period length 2: 3, 8, 15, 24, 35, 48, 56, 63, 80, 99. Notice that,

except for 56, all these values match the values of n for period lenth 2 on Table 2.3.1. If we take a closer

look, we will see that these numbers follow the pattern described by n = k2 − 1 for some k > 1. Also,

the smallest rationals that lead to period 2 with each of these values of n follow a pattern similar to the

one described by Theorem 3.2.2.

Theorem 3.3.2. There are infinitely many rationals k+1
k that have eventual periodic expansion with

period length 2 and n = k2 − 1, for some k > 1.

Proof. We proceed with a direct proof by expanding k+1
k . By Theorem 3.2.2, we know a0 = 1. So, we

calculate

x1 =
z

x0 − a0
=

√
k2 − 1

k+1
k − 1

= k
√
k2 − 1.

For the second step, we have a1 =
⌊
k
√
k2 − 1

⌋
=
⌊√

k4 − k2
⌋
. Notice that

√
k4 − 2k2 + 1 =

√
(k2 − 1)2 =

k2 − 1, which means k2 − 1 <
√
k4 − k2 < k2. Hence, a1 = k2 − 1. Now, we calculate

x2 =
z

x1 − a1
=

√
k2 − 1

k
√
k2 − 1− (k2 − 1)

= k +
√
k2 − 1.

Please, refer to (3.2.5) for complete explanation for the next steps. We know k − 1 <
√
k2 − 1 < k, thus

a2 =
⌊
k +
√
k2 − 1

⌋
= 2k − 1. So, we have

x3 =
z

x2 − a2
=

√
k2 − 1

(k +
√
k2 − 1)− (2k − 1)

=
k + 1 +

√
k2 − 1

2
.
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For the forth step, we have a3 =
⌊
k+1+

√
k2−1

2

⌋
= k. Then,

x4 =
z

x3 − a3
=

√
k2 − 1

k+1+
√
k2−1

2 − k
= k + 1 +

√
k2 − 1.

Finally, a4 =
⌊
k + 1 +

√
k2 − 1

⌋
= 2k, so

x5 =
z

x4 − a4
=

√
k2 − 1

k + 1 +
√
k2 − 1− 2k

=
k + 1 +

√
k2 − 1

2
.

Notice that x5 = x3, thus k+1
k has a periodic expansion with period length 2, and its expansion has the

form k+1
k = [1, k2 − 1, 2k − 1, k, 2k, k, 2k, k, 2k, ...] = [1, k2 − 1, 2k − 1, k, 2k].

3.4 Longer Periods

In this last section, we give a brief discussion on period length 3 and 4. If x is purely periodic with period

3, then x has an expansion of the form [d, e, f, d, e, f, ...] and so, by Theorem 2.1.2, x = x3, which means

x = d+

√
n

e+
√
n

f+
√

n
x

.

We can solve for x to get

x =
def+d

√
n−e
√
n+f
√
n+
√
d2e2f2+2d2ef

√
n+2de2f

√
n+2def2

√
n+d2n+2den+e2n+2dfn+2efn+f2n+4n3/2

2ef+2
√
n

.

Since we want the above equation to be a quadratic surd, the number inside the radical must be a

perfect square. Thus, we write

d2e2f2 + 2d2ef
√
n+ 2de2f

√
n+ 2def2

√
n+ d2n+ 2den+ e2n+ 2dfn+ 2efn+ f2n+ 4n3/2 = (u+ v

√
n)2

or

d2e2f2+2d2ef
√
n+2de2f

√
n+2def2

√
n+d2n+2den+e2n+2dfn+2efn+f2n+4n3/2 = u2+nv2+2uv

√
n,

which means, after some algebra, we must have

u2 + nv2 = d2e2f2 + n(d+ e+ f)2 (3.4.1)

and

uv = 2n+ def(d+ e+ f). (3.4.2)
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Similarly, if x is purely periodic with period 4, then x has an expansion of the form [d, e, f, g, d, e, f, g, ...]

and so, by Theorem 2.1.2, x = x4, which means

x = d+

√
n

e+
√
n

f+
√

n

g+

√
n

x

.

We can solve for x to get

x =
defg + de

√
n− ef

√
n+ dg

√
n+ fg

√
n+
√
λ

2(e(fg +
√
n) + g

√
n)

,

where

λ = d2e2f2g2 + 2d2e2fg
√
n+ 2de2f2g

√
n+ 2d2efg2

√
n+ 2def2g2

√
n+ d2e2n+ 2de2fn+ e2f2n+

2d2egn+ 8defgn+ 2ef2gn+ d2g2n+ 2dfg2n+ f2g2n+ 4den3/2 + 4efn3/2 + 4dgn3/2 + 4fgn3/2.

Since we want x to be a quadratic surd, the number inside the radical λ must be a perfect square. Thus,

we write

λ = (u+ v
√
n)2

or

λ = u2 + nv2 + 2uv
√
n,

which means, after some algebra, we must have

u2 + nv2 = d2e2f2g2 + n((d+ f)2(e+ g)2 + 4defg), (3.4.3)

uv = (d+ e)(f + g)(defg + 2n). (3.4.4)

We proceeded with a numerical method to try to find simultaneous solutions to (3.4.1) and (3.4.1)

as well as (3.4.3) and (3.4.4). We let n range between 2 and 1000 (excluding those that are perfect

squares). Since we only wanted maximal expansions, we had d go from b
√
nc to 100. Moreover, we

wanted d < e < f , so we had e go from d to 100 and f go from e + 1 to 100. In each case, we checked

if there were integers u, v > 0 that satisfied the equations. However, no solutions turned up other than

those found in our data.
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4 Other Results

4.1 Finite Expansions

When doing expansions of various rationals for various values of n, we noticed that the shortest possible

finite expansion appeared to have length 4. We first show that the shortest expansion a rational can have

has indeed length 4. We then prove a pattern that connects finite expansions of this length with values

of n that lead to these expansions. Please, remember that if two rationals differ only by an integer, then

they have the same expansion, except for the first term. Thus, for simplification, in the following two

theorems, we assume bxc = 0.

Theorem 4.1.1. The shortest expansion a rational can have has length 4.

Proof. We assume x is a rational, so, by Theorem 3.1.1, x1 is a quadratic surd, which means a1 = bx1c, and

thus, x has expansion with length at least 2. If x has expansion with length 2, then x = [a, b] = [0, b] =
√
n
b ,

but we assumed x is a rational, so it cannot have expansion with length 2. Finally, if x has expansion

with length 3, then

x =

√
n

b+
√
n
c

=
c
√
n

bc+
√
n
.

We multiply both sides by the denominator to obtain xbc+x
√
n = c

√
n or xbc+(x−c)

√
n = s+t

√
n = 0,

for s = xbc and t = x−c. This can only happen if s = 0 and t = 0. Thus, we have x−c = 0, which means

x = c. However, x must be a rational, so it cannot have expansion with length 3 either. Since x cannot

have expansion with length 1, 2 or 3, but can have expansion with length 4, the shortest expansion x can

have has length 4.

Theorem 4.1.2. If x is a rational and has a finite expansion [a, b, c, d]√n, then n = bc2d2

b+d .

Proof. Since we assume bxc = 0, we can say x = [0, b, c, d], and thus

x =

√
n

b+
√
n

c+
√

n
d

=
n+ cd

√
n

bcd+ (b+ d)
√
n
.

Now, we multiply both sides by the denominator

x(bcd+ (b+ d)
√
n) =

n+ cd
√
n

bcd+ (b+ d)
√
n

or

xbcd− n+ (xb+ xd− cd)
√
n = s+ t

√
n = 0,

for s = xbcd − n and t = xb + xd − cd. This can only happen if s = 0 and t = 0. Thus, we have
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xb+ xd− cd = 0, which means x = cd
b+d . We also have xbcd− n = 0, which means x = n

bcd . Hence,

n

bcd
=

cd

b+ d
,

and therefore,

n =
bc2d2

b+ d
.

Theorem 4.1.3. For rational numbers between 1 and 2, there are exactly two maximal expansions of

length 4, namely 3/2 = [1, 2, 1, 2] when n = 2 and 5/4 = [1, 6, 1, 2] when n = 3.

Proof. For this proof, we use the fact that xy
x+y ≥

min(x,y)
2 , whose proof can be found in the appendix.

Let b
√
nc = k, so k2 < n < (k + 1)2. By Theorem 2.1.3, each of b, c, d must be at least as large as

k, so n = bc2d2

b+d ≥ c2dmin(b,d)2 ≥ k2k k2 = k4

2 . Since n < (k + 1)2, n ≤ k2 + 2k. Thus, k2 + 2k ≥ k4

2 or

4 ≥ k(k2 − 2), which forces k ≤ 2. If k = 2, then n ≤ k2 + 2k = 8 and n ≥ k4

2 = 8, and so we can only

have n = 8. However, we know that n ≥ c2dmin(b,d)2 , and that when an expansion terminates, the last

partial quotient d must be greater than z. This means we need d >
√

8 or d > 2. We also know that

b, c ≥ 2. Thus, c2dmin(b,d)2 ≥ 2 · 3 · 2 = 12 > 8, a contradiction, ruling out all possible solutions. Now,

when k = 1, n ≤ k2 + 2k = 3 and n ≥ k4

2 = 1
2 , and so we can only have n = 2 or n = 3. If n = 2, then

d ≥ 2, and 2 ≥ c2dmin(b,d)2 , which forces c = 1. Thus, we have n = bd2

b+d or nd = b(d2 − n). This means

d2 − n must divide nd, which can only happen when d = 2, because, if d ≥ 3, then d2 − 2 > 2d. Hence,

for n = 2, there is only one solution: b = 2, c = 1, d = 2 and

x =

√
2

2 +
√
2

1+
√

2
2

=
2 +
√

2

2
√

2(1 +
√

2)
=

1

2
.

However, we want rationals between 1 and 2, so 1 + 1
2 = 3

2 = [1, 2, 1, 2]√2. Similarly, if n = 3, then d ≥ 2,

and 3 ≥ c2dmin(b,d)2 , which forces c = 1. Again, d2−n must divide nd, which also can only happen when

d = 2, because, when d = 3, d2 − 3 = 6 does not divide 3d, and if d ≥ 4, then d2 − 3 > 3d. Therefore, for

n = 3, there is only one solution: b = 6, c = 1, d = 2 and

x =

√
3

6 +
√
3

1+
√

3
2

=

√
3(2 +

√
3)

4(3 + 2
√

3)
=

1

4
.

Since, we want rationals between 1 and 2, 1 + 1
4 = 5

4 = [1, 6, 1, 2]√3.
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5 Future Work

From the beginning, there were several questions regarding continued fractions, and more have been

raised during this project. We started off with a simple, but nice algorithm to expand rationals into

continued fractions. Althought we did not expand a staggering number of rationals, and each expansion

was not as deep as desired, we were still able to use these expansions to develop a theory on non-simple

continued fractions. However, we belive that it might be nice if one could improve our algorithm or

come up with some algorithm more efficient that could extend the calculations deeper, that is, to more

rationals (larger denominators), and to greater depth (we did expansions with a depth of 500 for a few

values of n, a depth of 200 for some values of n and a depth of 100 for most values of n).

Other possibilities for future work include:

(1) With regard to n =
√

2, one could prove why roughly 72% of rationals have a terminating

expansion, and one could also investigate expansions of quadratic surds rather than rationals to verify if

it is still 72%.

(2) Find efficient ways to backtrack. That is to say, given some quadratic surd, y, one could find ways

to backtrack to a rational r so that y occurs among the values of x when r is expanded.

(3) It would certainly be fruitful to work on larger period lengths, especially lengths 3 and 4, trying

to find solutions to their equations as well as proving other patterns.

(4) Our investigation on finite expansions led us to conjecture that for any finite length, r = [a0, a1, ..., am],

there are only finitely many n for which r has such an expansion, and only finitely many a1, a2, ..., am as

well.

(5) One could have similar questions about tails where r becomes eventually periodic. For example,

is the shortest possible tail 2? Also, for any given fixed tail length, are there finitely many rationals that

have expansions with such tail length.

To conclude, there is undoubtedly further investigations to be done on the subject of continued

fractions. Many interesting patterns and properties have been uncovered for when numerators are radicals,

but inquiries still remain. These discoveries could be useful on other fields of mathematics, and that is

an interesting prospect for the future.
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A Proofs of Theorems and Algorithms

A.1 Period Detection: Floyd’s Cycle-Finding Algorithm

In order for us to detect periods in a list of numbers, we use the Floyd’s Cycle-Finding Algorithm.

However, we should not use the list [a0, a1, a2, ...], rather we should use the list [x0, x1, x2, ...], as defined

in section 2.1. The reason for this is because we know that if xj = xi for i < j, then the expansion of x

is periodic.

Suppose we are trying to detect a period in the list [x0, x1, x2, ...]. The Floyd’s Cycle-Finding Algo-

rithm works as follows: (refer to the image below):

(a) List with a period

We have a period with length n and two pointers, the “hare” and the “tortoise”, which are initially

m steps away from the period. We shall hypothesize that if we move the tortoise 1 step at a time, and

the hare 2 steps at a time, they will eventually meet after a total of i steps. Therefore, the following two

conditions must hold:

i = m+ pn+ k. (A.1.1)

2i = m+ qn+ k. (A.1.2)

A.1.1 says that tortoise moves a total of i steps, m steps of which are necessary to get to the beginning of

the period. Then, it goes through the period p times for some positive number p before it finally meets

hare at k more steps ahead the beginning of the period. Similarly, A.1.2 says that the hare moves a total

of 2i steps, m steps of which are necessary to get to the beginning of the period. Then, it goes through

the period q times for some positive number q before it finally meets the tortoise at k more steps ahead

the beginning of the period.

Now, if we can show that there is at least one set of values for k, q, p that makes A.1.1 and A.1.2

equal, we show that the hypothesis is true. One such set of solutions is p = 0, q = m and k = mn−m.
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We verify that these values work:

i = m+ pn+ k = m+ (mn−m) = mn

and

2i = m+ qn+ k = m+mn+mn−m = 2mn

It is important to notice that this is not necessarily the smallest i possible. In other words, the tortoise

and the hare might have already met before many times. However, since we have showed that they meet

at some point at least once, we can say that the hypothesis is true. Thus, they would have to meet if we

move one of them 1 step, and the other one 2 steps at a time.

The second part of the algorithm consists of finding the beginning of the period and its length. We

can do this by first noticing that when the tortoise and the hare meet, the values that they point to are

equal. Then we can backtrack by moving each of them one step back and comparing their values, until

they are not equal anymore or we reach the beginning of the list. Once either of these happens, we are

guaranteed to have found the beginning of the period. The next step is to keep track of this value (we

can call it the head of the period) and go through the list of x’s again but starting from the head. Once

we find another value that matches the head, we are guaranteed to have found the end of the period.

Since we know the beginning and the end of the period, we can easily calculate its length.

A.2 Additional Theorems

Theorem A.2.1. If x and y are positive intergers, then xy
x+y ≥

min(x,y)
2 .

Proof. This expression is symmetric in x and y, so without loss of generality, we assume x ≥ y. Then,

we have

xy

x+ y
− y

2
=

2xy − y(x+ y)

2(x+ y)
=
xy − y2

2x+ 2y
.

If y = x, then the above expression is equal to 0, otherwise it is nonnegative.

B Data Collection

Here we provide a number of tables displaying all rationals that led to periodic or finite expations within

the bounds of our search, as described in section 2.3, and, if applicable, we also provide their respective

tails and period lengths. Also, notice that the rationals for n = 2, 3, 6, 8, 12 are not included on this

paper, because there are too many rationals for each of these values of n. However, we provide external

files with such data.
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B.1 Finite Expansions

Table B.1.1: Rationals that led to finite expansions

n rational expansion length

5 38/21 7

5 26/25 9

5 45/44 6

5 85/44 14

5 53/48 12

5 69/52 38

5 77/73 15

5 75/74 6

5 179/92 5

5 256/129 5

5 160/153 7

5 248/163 17

5 248/165 5

5 234/185 5

5 207/188 8

5 197/192 10

5 204/199 25

5 334/213 45

5 35/239 78

5 278/245 33

5 392/277 27

5 409/295 35

5 331/316 32

5 415/318 36

5 447/370 14

5 517/373 37

7 45/43 5
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B.2 Periodic Expansions

Table B.2.1: Rationals that led to peridic expansions

n rational tail length period length

5 344/321 11 4

5 521/356 24 4

10 4/3 2 22

10 13/8 18 22

10 33/29 11 22

10 46/31 10 22

10 47/46 6 22

15 5/4 3 2

24 6/5 3 2

24 25/18 12 2

32 4/3 3 1

32 18/17 4 1

35 7/6 3 2

48 8/7 3 2

60 5/4 3 1

60 32/31 4 1

63 9/8 3 2

80 10/9 3 2

96 6/5 3 1

96 50/49 4 1

99 11/10 3 2

C Mathematica Code

The following code can be pasted as seen and executed in a Mathematica notebook. There is only one

function which encompasses the computations needed for this work, which is described in more detail

using code comments.

ExpandNumberAsContinuedFraction: this function expands a given rational x into continued

fractions using the continued fraction algorithm, as described in section 2.1. It takes three parameters:

x, the number to be expanded, a fixed number z and n, which, here, defines the maximum number of

terms the expansion can have or the maximum number of steps taken by the algorithm. The function

can return three kinds of outputs: {0,0}, if the expansion is finite, {tail, period length} if the expansion

is periodic or {-1,-1}, if the algorithm could not define if the expansion is periodic or finite.
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1 PopulateExpans ionList [ l i m i t ] :=

2 (

3 For [ i = 0 , i < l im i t , i++,

4 (∗ Maximum number o f d i g i t s ∗)

5 upperBound = 100000;

6

7 a = Floor [N[ x , 5 ] ] ;

8 AppendTo [ l i s t , a ] ;

9 AppendTo [ l i s t x , x ] ;

10

11 (∗ F in i t e expasion , so qu i t ! ∗)

12 I f [ x − a == 0 , Return [{0 , 0} ] ,

13

14 (∗ qu i t i f c o e f f i c i e n t s are g e t t i n g too big ∗)

15 I f [ IntegerLength [ In tege rPar t [ Numerator [ x ] ] ] > upperBound | |

16 IntegerLength [ In tege rPar t [ Denominator [ x ] ] ] > upperBound ,

17 Return [{−1 , −1} ] ;

18 ,

19 x = Rat i ona l i z e [ S imp l i f y [ z /(x − a ) ] ] ;

20 ] ;

21 ] ;

22 ] ;

23 ) ;

24

25 ExpandNumberAsContinuedFraction [ ] :=

26 (

27 PopulateExpans ionList [ 4 ] ;

28 (∗ Torto i s e and Hare i n i t i a l po in t s ∗)

29 t = 2 ;

30 h = 3 ;

31

32 While [ t <= n/2 ,

33 (

34 (∗ Check i f the hare and the t o r t o i s e have met ∗)

35 I f [ l i s t x [ [ t ] ] == l i s t x [ [ h ] ] ,

36 (

37 (∗ Backtrack a l l the way to f i nd the per iod beg inning ∗)

38 While [ l i s t x [ [ t − 1 ] ] == l i s t x [ [ h − 1 ] ] && t > 1 ,

39 t−−;

40 h−−;

41 ] ;

42

43 head = t ;

44 t++;

31



45 l ength = 1 ;

46

47 While [ l i s t x [ [ t ] ] != l i s t x [ [ head ] ] ,

48 l ength++;

49 t++;

50 ] ;

51

52 head−−;

53 Return [{ head , l ength } ] ;

54 ) ] ;

55

56 t++;

57 h += 2 ;

58

59 (∗ Populate expansion l i s t i f needed ∗)

60 I f [ h >= ( Length [ l i s t x ] ) ,

61 (

62 r e s u l t S e t = PopulateExpans ionList [ 2 ] ;

63 Switch [ r e su l t S e t , {0 , 0} , Return [{0 , 0} ] , {−1, −1} ,

64 Return [{−1 , −1}] ] ;

65 )

66 ] ;

67 ) ] ;

68 ) ;

69

70 (∗ l i s t o f va lue s o f a ∗)

71 l i s t = {} ;

72 (∗ l i s t o f va lue s o f x ∗)

73 l i s t x = {} ;

74 x = 3/2 ;

75 z = Sqrt [ 2 ] ;

76 (∗ n , here , d e f i n e s the maximum number o f s t ep s taken by the a lgor i thm ∗)

77 n = 100 ;

78 (∗ execute the func t i on ∗)

79 ExpandNumberAsContinuedFraction [ ]

80 (∗ pr in t the l i s t o f va lue s o f a ∗)

81 l i s t

82
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