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Evaluations of hypergeometric functions over finite fields

Ron EvaNs and John GREENE
(Received October 15, 2008)

ABSTRACT. We prove two general formulas for a two-parameter family of hyper-
geometric 3F>(z) functions over a finite field F,, where ¢ is a power of an odd
prime. Each formula evaluates a 3/ in terms of a »F} over Fp.. As applications, we
evaluate infinite one-parameter families of 3/ (}‘) and 3F>(—1), thereby extending results
of J. Greene-D. Stanton and K. Ono, who gave evaluations in special cases.

1. Introduction and main theorems

Let F, be a field of g elements, where ¢ is a power of an odd prime p.
Throughout this paper, 4, B, C, D, E, R, S, y, ¥, & ¢ will denote complex
multiplicative characters on F;, extended to map 0 to 0. The notation ¢ and
¢ will always be reserved for the trivial and quadratic characters, respectively.
Write A for the inverse (complex conjugate) of 4. For ye F,, let ¥ denote
the additive character

= exp(%(yp-i-ypz-F"""yq)) (1.1)

Recall the definitions of the Gauss sum

G(A)=>_ Ay (1.2)
yeF,
and the Jacobi sum
J(A4,B)= 3 A(y)B(1 - y). (13)
yeF,

Note that
G(e) = —1, J(e,e) =q—2,
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and for nontrivial 4,
G(A)G(A) = A(-l)q,  J(4,4) = —A(-1).
Gauss and Jacobi sums are related by [1, p. 59]

G(4)G(B)

J(AvB): G(AB) )

if AB+#e. (1.4)

The following formulas are special cases of the Davenport—Hasse product
relation for Gauss sums [1, p. 351]:

A(4)G(A)G(Ag) = G(A*)G(4) (1.5)
and
A(27)G(A)G(AY)G(AY) = qG(4), (1.6)

where y is a cubic character on F,.
For x € F,, define the hypergeometric »F; function over F, by [7, p. 82]

A, B -
i (PE) =TI msc it -w a9
yeF,
and the hypergeometric 3F, function over F, by [7, p. 83]
A,B,C _ .
3F2< D,E‘ )— Z C(»)CE(y — 1)B(z)BD(z — A(1 - xyz). (1.8)

e “binomial coefficient” over F, is defined by [7, p. 80]
A B(-1 —
( ):QJ(A,B). (1.9)

We will need the function

F(A, B; x) ::%;(A; )(2;)‘(%) xeF,, (1.10)

and its normalization

F*(4,B;x) := F(A, B;x) + AB(—1) d

1.11
. (L.11)

Another character sum that we will need is
g(R,S;x) =Y R(1-0S(1-xr*), xeF, (1.12)

teF,
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It is not hard to show that g(R, S;x) is related to the Gegenbauer function P3
3, (4.1)] by

2
41?,5;%) = gR(x)S(1 — x)PS(x),  x*¢{0,1}.  (1.13)

For ueF,, let N(u) =u'"" denote the norm map from F,. to F,. For
any character y on F,, the composition yN is a character on F,. called the lift
of y from F, to F,.. We place a hat on a character sum function over F, to
indicate that the sum is taken over F,. instead of F,. For example, for u € F2,
G(RN,SN;u) := Y RN(1 - 1)SN(1 — ut®).

ZEF a2

Our main results are Theorems 1.1 and 1.2 below, which evaluate an
infinite two-parameter class of 3F> functions in terms of ,Fy. This class of 35
functions has also been evaluated in terms of F* (see, e.g., (2.1)). In one
respect, F'* has an advantage over zﬁl, since F* is defined over F, while F| is
defined over the quadratic extension F,.. However, there is a tradeoff, since a
»F) over any finite field is generally better understood than F*. We are unable
to express F* in terms of a ,F|, in general. However, because every element
of qu is a square, it is always possible to express F* in terms of a 2F1; see
(3.2)-(3.3). This has been our motivation for passing to the extension field F
in this paper.

THEOREM 1.1. Let C # ¢, A¢{e,C,C*}. For xeF,, x¢{0,1}, define
ueFp by u> =(x—1)/x. Then

3F2<A Ac?, c¢‘ ) qﬁ;l—x)

CON,CoN |1 —u
212F1< ¢ 0 >,

AC¢N | 2
where

J(AC?, AC)J (AN, ACN)

Zy = C(=1)A(1 — x)AN(u) AC4N (1 — u) J(4,AC)J(¢N, ApN)

THEOREM 1.2. Let C# ¢, A¢{e,C,C?*}, xeF,, x¢{0,1}. Define a
character o on ¥, by o> = AN. Then
X
x—1)
AC

3F2(A AC?, C¢‘ ) ¢5(11_X) . (oc(/ﬁN,oc
— (1] _ o JACYLAC)I (N, ACN)
Z, = C(—=1)AC(4)A(1 — x) A AC) @CN. agN)

—Zy)F N

where
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Observe that the argument of the »F| in Theorem 1.2 lies in F,, while that
in Theorem 1.1 may lie in the less accomodating field F,.. Here too there is a
tradeoff, however, because Theorem 1.1 does not require the introduction of the
extra character « on F,. that occurs in Theorem 1.2.

As an application of Theorem 1.1, we evaluate the following one-
parameter family of 3F(}).

THEOREM 1.3. Let S be a character on ¥, which is not trivial, cubic, or
quartic, i.e. ord(S) ¢ {1,3,4}. Then

P (S, S3,S‘ 1) N ESUNONE if" ¢ =2(mod 3)
VI s2spl4) T | S (g + 2 Re(U(S, WIS ), i g = 1(mod 3),
where y denotes a cubic character on ¥, when g = 1(mod 3).

The special case S = ¢ of Theorem 1.3 was proved in 1998 by K. Ono [10,
Theorem 6(v)], [11], thus solving a problem posed in 1992 by Koike [9, p. 465].
We remark that in view of [7, Theorem 4.2], there is a result similar to
Theorem 1.3 in which the argument 1/4 is replaced by its reciprocal 4.

As an application of Theorem 1.2, we evaluate the following one-
parameter family of 3F>(—1).

THEOREM 1.4.  Let C be a character on ¥, which is not quadratic or quartic,
ie, ord(C) ¢ {2,4}. Then

,C%¢,C
A(*22H)

=1 if ¢ =3(mod4) and ¢(2) = C(-1)

-1_20) Re J(Bn, ), if ¢ =3(mod4) and ¢(2) =—-C(-1)

q q°

( )
( )
if ¢q=1(mod4) and Cy is not a square
4+ Re(J(D,$)J(Dy.¢)), if q=1(mod4) and Cy=D?,

where y, D are characters on ¥, with ord(y) =4 when q = 1(mod 4), and f, n
are characters on ¥ with ord(f) =8, n> = CN when q = 3(mod 4).

The special case C = ¢ of Theorem 1.4 was proved in 1986 by Greene and
Stanton [8], thus solving a problem posed in 1981 [5]. The case ¢ = 1(mod 4)
of Theorem 1.4 (which does not require passing to the extension field F,.)
is equivalent to another result of Greene and Stanton [8, (5.1)]. To see the
equivalence, observe that the 3F, in Theorem 1.4 can be transformed via [7,
Theorem 4.2(i)] to
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C(—1)3F2<¢’ ol —1),

and this 3F, can in turn be converted to that in [8, (5.1)] by changing the order
of the numerator parameters in accordance with [7, Theorem 3.20(i)(ii)]. As
Greene and Stanton only sketched a proof of [8, (5.1)], our proof of Theorem
1.4 will treat the case ¢ = I(mod 4) in full detail.

The evaluations in Theorems 1.3, 1.4 have analogues over the reals which
are much easier to prove. An analogue for Theorem 1.3 over the reals is

- (ls,3sl,s 1) B (16)‘“1 reyris+y\’
2 4) \21) \r@r(s+h)-
An analogue for Theorem 1.4 is

2s,s+%
2
3P %’26_%’6‘ -1 :272c+1/2 F(C+%)F(%) )
re)ris)

2c,c+%
These two analogues may be proved, for appropriate values of the parameters,
by applying Pfaft’s transformation [7, (4.5)] to the ,F) in Clausen’s theorem |8,
(4.1)] and then evaluating the resulting »F; (—1) and »F; (}) in terms of gamma
functions via [2, p. 104, (51) and (53)].

We prove Theorems 1.1 and 1.2 in Section 2, after presenting seven
prerequisite lemmas and theorems. Theorems 1.3 and 1.4 are proved in
Sections 3 and 4, respectively.

For further ;F, evaluations, see [4] and [3]. In [3, (1.14)], for ord(S) ¢
{1,3,4}, we proved the evaluation

S, S3.8|-1
F 9 b _
} 2( 2,54 8)

{ —¢(—=1)S(-8)/q, if S is not a square

thus extending a result of K. Ono, who obtained the special case S = ¢ [10,
Theorem 6(ii)]. Our evaluations of 3F(}) and 3F>(—1) in Theorems 1.3 and
1.4 are more complicated to prove, in that they require passing to a quadratic
extension of F,. Our attempts to extend Ono’s 3F,(¢;) evaluation [10, The-
orem 6(vii)] using Theorems 1.1 or 1.2 have been unsuccessful, because we have
been unable to evaluate the corresponding ,F, functions.

We close this section with an example of a 3F>(—1) evaluation where the
three numerator parameters are each ¢, the two denominator parameters are
each ¢, and ¢ is a prime congruent to 1 or 3 (mod 8) so that ¢ = x> + 2y? for
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integers x, y. First consider the case ¢ = 3(mod 8). By Theorem 1.4 with
C=g¢

3F2(¢7¢,¢

&€

1 2 .
—1) = _f? Re J(5°,5°). (1.14)

To simplify this formula, first observe that

: GG =GB 6B
G(B) q
By [1, Theorem 11.6.1], G(ﬂ6) = —q. Since the restriction of § to F, is the
quadratic character ¢, we have f(—1) = —1. Thus (1.15) becomes

A pSy2
f(ﬁ57ﬁ6)=—G(f:) . (1.16)
By [1, Theorems 12.1.1 and 12.7.1(b)],
G(B°) = (x+iyV2)’G(¢)* = —q(x + iyV2)*. (1.17)
By (1.16)—(1.17), the evaluation (1.14) becomes
¢7¢a¢ _ q— 4X2
3F2< e _1)_7’ (1.18)

in agreement with [10, Theorem 6(iii)].
Now suppose that ¢ = 1(mod 8). By Theorem 1.4 with C =g,

1 2
3F2(¢’¢’¢ ’—1) =-+=ReJ(D,¢)’,

&8 q 4

where D is an octic character on F,. By [l1, Theorems 3.3.1 and 2.1.4],
Re J(D,$)* = Re(x +iyv2)* = x* — 27
Thus
2 _

3F2(¢,¢,¢‘_1):4x =)
€& q

again in agreement with [10, Theorem 6(iii)].

2. Proof of Theorems 1.1 and 1.2

Our first lemma gives an alternative representation for the function F*
defined in (1.11), by employing Gauss sums in lieu of Jacobi sums.
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Lemma 2.1. If A # C, then

* . — C(_l) = = f
F (4,60 == eae) 6);6(/1%2)0(%)0(6%)%(4).

Proor. First suppose that A is nontrivial. By (1.11),

AC(-1)A(3) el

A R P SUCGU LA 6y
LACEDAR) N o
= 7 +q(q_1)J(A,A)J( ,CA) <4>

_AC(-1)A(3) C(-1) =[x
- e Jrq(q—I)G(AC));G(sz)G(X)G(CX)X<Z>’

and the result follows. When A is trivial, the first equality above still holds,
and after separating out the summand for trivial y, we arrive at the desired

result.

The next theorem represents F* in terms of the function g defined in (1.12).

THEOREM 2.2. If A # C and x ¢ {0,1}, then

)= g(AC? AC;1 —x).

x) A(2)AC(1 — x)
q

F* <A, C;
x
Proor. Let y#0. By Lemma 2.1,

L= F*(4,C; y)alg - DC(-1)G(AT) = " G4 GG (%)

2 ) _
= 3 e C Sa(fe) = (0= 1) X A Cl)
t,u,v#0 V4 t,o#0

Replacing ¢ by 2vt, we obtain

L=(g—1) ) 0" 420 4C(v)
t,v#£0

= (g - 1)AQ2)G(AC) Y A(AC(yr* + 2+ 1),
t#0
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since 4 # C. Replace ¢ by 1/¢ to obtain

L=(q-1)A(2)G(AC) Y AC*(1)AC(* + 2t + y)

= (¢ - 1)A(2)G(AC) Y AC* (1= 1)AC(£* + y - 1).

Putting y =%, we get

x—1°

F*<A’C5xi 1) :A(Z)Z(_I)ZAcz(t_ UAC( 2 xi 1)

_ MZAC’Z(I —9AC( = (1-x)7),

the desired result.

COROLLARY 2.3. If A # C and u ¢ {0,1}, then
F*(4, ZAC2 NAC(1 —u—12).
The next theorem gives a transformation formula for F* akin to Euler’s
transformation for »F [7, (4.6)].

THEOREM 2.4. Let u#1, A¢ {e,C,C*}. Then

F*(A4,C;u) = ACH(1 — u)%ﬁ(ficz, C;u).

Proor. Define the function L; by
Li(A) := G(AC?)G(AC)F*(A, C;u).
By Corollary 2.3,

Z > ACZ( )Acz(luf—fz)cw

t w,z#0
Z Z ACZ W AC )Cwl ) +z(1—u—1?)
t w,z#0

ACZ W (Z) C;(Zlfv72wt+17u712)
M;O zt:
Z AC2 z((w+1)27u)ZC;(HW)Z
w,z#0 t

= LZ(A)>
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where

Ly(A4) = H=DC@)G) Z /ICZ(W)C¢(2)C5((W+1>27“>.

q w,z#0

Replacing w by 1/w and z by zw?, we have L,(4) = L3(A4), where

L3(A) = w Z A(W)C¢(Z)CZ((W+1)Z_uwz>,

q w,z#0

Replacing w by w(l —u) and z by (liu) in the definition of L,(A), we obtain
La(A4) = ACH(1 — u)Ls(AC?) = ACH(1 — u)Ly(AC?),

which is equivalent to the desired result.

The next theorem expresses a 3F> in terms of the square of the function g
defined in (1.12).

THEOREM 2.5. Let C# ¢, A¢ {e,C,C*}, x # 1. Then
N _ B
3F2<A,AC ,C¢‘x> _ ~ C(x)g(1 —x)
c*C q
+ C(-=1)AC(4)AC*(1 — x)

J(AC2, AT)

X _ AC?, AC;1 —x)2.
2a(4,40) " )

Proor. By [3, Theorem 1.1],
. _ B
3F2(A’AC ,C(/ﬁ‘x) _ C(x)p(1 — x)
c?C q
+ C(—4)Cp(1 — x)F*

x <A,C;X>F*<Acz,c;xfl>. (2.1)

x—1

Substitute for the rightmost factor using Theorem 2.4, and then apply Theorem
2.2 to obtain the desired result.

The next theorem provides us with the means of passing to the extension
field F,» in this paper. It expresses g* in terms of the function g defined over
F,., in analogy with the Davenport-Hasse lifting theorem [1, Theorem 11.5.2].
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THEOREM 2.6. Suppose that R and S are nontrivial, x € F,, and x ¢ {0, 1}.
Then

2S(—4)Rp(x)RS(x — 1)J (R, S?)G(S)?

R.S: 2:—AR .
g( 7S’x) g( N7SN7X)+ G(Sz)

Proor. Let p(x) be a polynomial over F,, and for a character £ on F,,
define

E)=)_ E(p(u). (2.2)

uek,

Choose y e F,2 so that y? generates F; . We have

H(E)? :y; E(f(y,2)) (2.3)
and o
}Z:F EN(p(y+y2)) = ZF E(f(y,72)), (2.4)
where | o
f(y,2) = py+2)p(y —2). (2.5)

Since f(y,z) is an even function of z, there exists a two-variable polynomial /
over F, such that

S =h(y,2%),  f(r.92) =h(y.y*2?). (2.6)
By (2.3)-(2.6)
H(E)® + H(EN) Z )+ E(h(y,7°2%)
=2 (1+4G) +Zl— »,2))
—23 " E(h(y,2)) 2.7)

Applying (2.7) to the function g, we have
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g(R,S;x)> + §(RN, SN; x)
2

= ZR(I — 24y —2)S(1 = 2x(¥* + 2) + x*(y? — 2)?)

=> R(1 =2y +2)S(1 - 2x(2y* — 2) + x’27)
- ZR(I +y+2)S(1 +x2)* = xp?)

ZR( ——+y+Z>S(x22 -7

X

S(x)RS2< ; ) > R+ y+2)S(xz> - y?)
»,z

227

= RS(x)RS?*(x — 1){S(X)J(R, S%) + ZR(I + y(1 +2))8?(y)S(xz* — 1)}

where

Wi=>_ S*(1+42)S(xz* - 1),

and 6(S%) =1 if S =¢ and 5(S?) = 0 otherwise. Now,

:ZSZ(Z)S (z— 1) Zs( Z_l 1)
_Zs (1-2)2=2%) =—8(x)+ W,
where
ZS (1-2)?%-2%).

Thus

g(R, S;x)> + (RN, SN; x)
2

= RS(x)RS*(x — 1){(qg — Dp(x — 1)6(S?) + J(R, S>) W>}.

RS(x)RS*(x — 1){S(x)J(R,S?) + (g — 1)S(x — 1)5(S?) + J(R, S*) W'}
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N
\
“
=
\
=
%!
A/~
i8]
\
= o
] =
|
=
| ] =
~—

=35(x— szL
= S( 1)25( (X_1)2>
=S —1)> (144(2)S(z = x) = S(1 — x)SP(x)J (S, $), (2.9)

since S is nontrivial. By (2.8)—(2.9),

g(R, S; x)? +2é(RN, SN;x) Rp(x)Rp(x — 1)(g — 1)5(S?)

+ RP(x)RS(x — )S(=1)J(S,$)J(R,S?).  (2.10)

By (1.5), when S # ¢,

J(S,¢) = (2.11)

The result now follows from (2.10)—(2.11) when S # ¢, and it follows easily
from (2.10) when S = ¢.

The following theorem expresses a 3F» in terms of the function F* defined
over F.

THEOREM 2.7. Let C # ¢, A¢{e,C,C*}, xeF,, x¢{0,1}. Then

3F2<A Ac?, c¢‘ ) X)p(1 — x)

q
_C(-4)4 ( ) (AC%,AC)
AC)
(AN CN; ) (2.12)
Proor. Combining Theorems 2.5 and 2.6, we have, after simplification,
2 1 —

3F2(A Ac C¢‘ > 7415( al V1, (2.13)

q

where
J(AC?, AT)

V= C(-1)AC(4)AC*(1 — x) §(AC?N,ACN;1 — x).

q*J(4,AC)
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By Theorem 2.2,
V, = V,F* <AN, CN: x:) (2.14)

where
C(-1)AC(4)AC*(1 — x)J(AC? AC)

V2 = = =
AN(2)ACN(1 — x)J(4, AC)

Since AN(2) = A(4) and ACN(1 — x) = A*C?*(1 — x),

J._ CL4)A( — x)J(AC? AC) 015
? J(4,AC) ' '

The result now follows from (2.13)—(2.15).

We are now in a position to prove Theorems 1.1 and 1.2. Let C # ¢,
A¢{e C,C*}, xeF,, x¢{0,1}. By [3, Theorem 1.2,

x >:A(4)j(¢N,ACN) Fl(o‘cqﬁN,a‘c x

-1 J CN |x—-1

F* (AN, CN;
x J(aCN,apN)

>, (2.16)

where o is a character on F,» defined by «* = AN. Also, by [3, Theorem 1.6],

F (AN, CN: x)
x—1

— &) AN()ACHN(1 — ) AN ACN) (5¢N7 CHN |1 —u

J(¢N, AgN) 2! AC¢N| 2 ) 217)

where u € F» is defined by u? = (x —1)/x. Using (2.17) in (2.12) we obtain
Theorem 1.1. Using (2.16) in (2.12), we obtain Theorem 1.2.

3. Proof of Theorem 1.3

Let ord(S) ¢ {1,3,4}. We first consider the case g = l(mod 3), so that
there exists a cubic character i on F, and an element u = v—-3€F,. Write
o= % (a primitive cube root of unity in F,).

By [3, Theorem 1.7] with 4 =S, C = S,

§,S3,S 1 _—¢(—1)S(4) J(§,S3) S, S
3F2( S%Sqﬁ‘z)_ g IEDSUEe TR ZFI(

By (1.7),
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With the substitution y = (2”62“73, we have
2F1<S:9§ —w) ‘1] < )ZSl—x
- és( 1; “) ZS(I — X)(1+¢(x) + §(x))
(2= s, vy + 05,0 3.1
= 5(T ) v+ . 6.
Therefore
S.83,8[1\ —¢(-1)S(4
3F2< 2,84 Z):%—F Ty + 27>,
where
J(S,S%) 5(27)
=g DS GG S SN RS (62)
and
o J(S,S%) §(27) -
Using (1.6), one obtains the simplification T, = (4;5() Therefore
S, 83,8 1)S(4) T,
A0, o

and the result readily follows from (3.2)—(3.4) in the case ¢ = 1(mod 3).

Now let ¢ =2(mod 3). In this case ¢(—3) = —1. Define the elements
u=+v-3, 0= 12“‘ in Fp, and let /2 denote a cubic character on Fp..  As in
(3.1), we have

2F1<SNS§x co> 1SN( 3 - ”> (J(SN, )+ J(SN, 7))

where the last equality holds because
J(SN,%) = J(SIN,29) = J(SN, 7).
We now apply Theorem 1.1 with A =S, C =S¢, x =1 to obtain
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q
S@)903)  29(-1)S(57) G(5°)G(S*$)G(S*¢N)G(SN)G(4)
q ¢’ G(S)G(529)G(ASN)G(¢N)
(3.5)

By the Davenport—Hasse lifting theorem [1, Theorem 11.5.2], G(xN) = —G(x)?
for any character y on F,. Also, G(1) = ¢, by [1, Theorem 11.6.1]. Thus (3.5)
becomes

5,838 S@)¢(3) 26(~1)S(33) G(SP)G(S)
3F2< S¢’ ) q - qG(JSN)
where

_ 5(=27)G(S*)G(3)
0 = oS (3.6)

It remains to prove that Q; = 1.
Since ¢ = 2(mod 3),

G(ASN) = G(11SYN) = G(ASN),

so by (1.6),

» _ S227)G(S%)°G(S)? _
"7 GUSN)GUSN)

Thus Q; = +1. To determine the correct sign, first consider the case S = ¢.
By [1, Theorem 11.6.1] with m = 6,

G(2SN) = G(IgN) = —4(~1)q.

Thus, from (3.6), Q1 = —¢(—27) =1 when S = ¢. Since ord(S) ¢ {1, 3,4}, we
may now assume that ord(S) > 5.
Choose a character y on F, of order ¢ —1 in such a way that

S=y", with 1 <w < q?

Let v(w) denote the fraction

(=27)" (w + q%Z) ! (W + @)!

viw) = (g—1—w)!(3w)! ’
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reduced to lowest terms. To show that the expression Q; in (3.6) equals 1, it
suffices by Stickelberger’s congruence [1, Theorem 11.2.1] to prove that

om) = —1(mod p), O<m< Il (3.7)

(To see more clearly the connection with Stickelberger’s congruence, simplify
the left side of (3.7) using Anton’s congruence [6, (2)].) We have

o(0) = (=) ~{@-DE-2).. (-5} (25!

(-1 (g—1)!

= —1(mod p).

Now (3.7) follows easily by induction on m, so the proof that Q) =1 is
complete.

4. Proof of Theorem 1.4

Let ord(C) ¢ {2,4}. We first consider the case g = l(mod 4), so that
there exists a character y on F, of order 4.
By [7, Corollary 4.30], if S, T¢, and ST?¢ are all nontrivial,

¢,S, T2 _S¢(_1) _ T¢7 Ta§T2¢
3Fz(Tzqf,STz _1)_ g TS 1)3F2( T2¢,5T?

1). (4.1)
Apply (4.1) with S=C¢, T = Cy to get

2 -1 Cx,Cy, C
3Fz<¢,c¢é§:g _1>:¥+X(_1)3Fz< £ gz’g‘l>. (4.2)

Thus

¢, C*p, Co 1 Cy,Co, Cy
F —1 | ==4 Cy(-1)3F
3 2( 2. q+ 7(—=1)3F> c, C?

1>, (4.3)

because by [7, Theorem 3.20(ii)], the effect of transposing the two rightmost
numerator parameters in the 3/, on the left side of (4.2) is to multiply that 3F,
times the factor C(—1).

By [7, Theorem 4.38(i)],

Cx, Co, Cx
32 C,C?

0, if Cy is not a square
1) =\ LI DL h I D4 Drbd) i oy - 2 (4.4)
(]2 b % .

The desired result in the case ¢ = 1(mod 4) follows easily from (4.3) and (4.4).
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Now let ¢ = 3(mod 4), and let 5,  be characters on F,. with ord(f) = 8,
n* = CN. Write o = f°.

By [7, (4.15)],
5 (fnl5) =520 IR =500 @)
where
_ G(Bn) , G(Bn) p
=G o) (0
By Theorem 1.2 with x=—1 and 4 = ¢,
¢, C*¢,Co _C(=1)¢2)  «2) _C(=1)4(2)
3F2( Cz,C‘_l) T T
IR0 G(CHG(CHGIN)G(CHN)
G(2) G(¢)G(CP)G(aCN)G(%)
_C=190)_ 0:0 )
q q '
where
0, - COP(-222)G(C*P)Gle) ws)

G(aCN)

We proceed to simplify Q,. First suppose that C(—1) = ¢(2) = 1. Then
g=7(mod 8) and C41/2=¢ so y?=y. Thus

G(pn) = G(Bn*) = G(fn),

so the first term in (4.6) equals 1. The second term also equals 1, so O, = 2.
Next suppose that C(—1) = ¢(2) = —1. Then 5% = p* and ¢ = 3(mod 8),
and it follows similarly that Q, =2. Next suppose that C(—1) = —¢(2).
Then G(By) = G(B*n) and G(Bn) = G(B*y). It follows in this case that

G(pn)
— 2 Re 1)
. ) G(pn)
Since G(O_C) = ¢(2)q by [1, Theorem 11.6.1], we have shown that
9 if C(—1) =4(2)
¢ {%2) Re J(fn,a), if C(—1)= —¢(2). (4.9)

In view of (4.7) and (4.9), it remains to show that Q3 = 1.
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Since ¢ = 3(mod 4),
G(&CN) = G(a’CIN) = G(aCN),
so by (1.5) and (4.8),

%(4)C*(4)G(C*$)*G(9)’

2
= = = = 1
03 G(2CN)G(&CN)
Thus Q3 = +1.
Since ¢ = 3(mod 4), we have ¢(—1) = —1, and the restriction of « to F, is
trivial. Thus (4.8) becomes
C?$(2)G(C?*$)G
0, CHQIG(CHG) w10
G(aCN)

Let y be a character on F, of order ¢ — 1, chosen so that
—~2 w : q— 1
Cop=y", WlthlSWST.

Since w must be odd, we write

w=2k+1, with 0<k< q%.

Let u(k) denote the fraction
22 (ke + 451!
u(k) = 2
(2k + 1)!(‘%)!

reduced to lowest terms. To show that the expression Q3 in (4.10) equals 1, it
suffices again by congruences of Stickelberger [1, Theorem 11.2.1] and Anton
[6, (2)] to prove that

-3
u(k) = 1(mod p), 0<k< qT
This congruence is trivially true for k=0, and it follows for general k by

induction. This completes the proof that Q; = 1.
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