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Abstract. If the level sets of a ranked partially ordered set are totally ordered, the greedy match between 
adjacent levels is defined by successively matching each vertex on one level to the first available 
unmatched vertex, if any, on the next level. Aigner showed that the greedy match produces symmetric 
chains in the Boolean algebra. We extend that result to partially ordered sets which are products of 
chains. 

It is widely thought that for Young’s lattices corresponding to rectangles, the greedy match is 
complete. We show here that the greedy match is, in fact, complete for n x 2, n x 3 and n x 4 rectangles 
but not for n x k rectangles if k 2 5 and n is sutllciently large. 
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1. Introduction 

Let G be a bipartite graph with vertex sets U and V. A matching in G is a bijection 
between subsets U’ c U and v’ E Y such that corresponding pairs of vertices are 
joined by edges of G. A matching is called complete if either U’ = U or v’ = V. 

If U and V are each totally ordered, the greedy match on G is defined as follows. 
Examine the vertices of U one at a time in order. For each vertex u E U, match it 
to the first compatible vertex in V (if any) which has not been matched. For 
example, the greedy match for 

a b c d 

G: w 

e f g 

(1.1) 

(ordered from left to right) is {eu, gc}. 
It is well known [l] that for the Boolean algebra B,, if level sets are ordered 

lexicographically then the greedy match is, in fact, a complete match between any 
two adjacent levels. Moreover, the resulting induced chain decomposition is a 
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symmetric chain decomposition. This is illustrated for B4: 
1111 

0111 1011 1101 1110 

/- 
0011 0101 0110 1001 1010 1100 

\x\ 
000 1 0010 0100 1000 

0000 

(1.2) 

In this paper, we investigate the properties of the greedy match in Young’s 
lattice, G!JL, the set of all partitions whose Ferrer’s diagrams fit inside the Ferrer’s 
diagram of a given partition 1. The order relation is defined by containment of 
Ferrer’s diagrams and each level set is ordered lexicographically. For example, the 
Hasse diagram for %d2, is: 

g 421 : (1.3) 

The motivation for this paper is that when I is a rectangle, it is known that there 
is a complete match between any two successive levels of Young’s lattice [5], but 
there is no known explicit construction of such a match in general. The first attempt 
at constructing a complete match is usually to investigate the greedy match and it 
was widely believed that the greedy match worked. Stanley [5] conjectured that in 
the case of a rectangle, Young’s lattice is a symmetric chain order. Again, this has 
been verified for small cases [2,4,8] but not in general. If the Ferrer’s diagram of 
a given partition is not a rectangle, very little is known (see [6]). We show here that 
the greedy match is complete for g’,*, g”,, g,+ and gab, but that it is not complete 
for g,,, if m 2 5 and n is sufficiently large. 

Even though the greedy match fails to be a complete match in general, it is 
amazing that is works as well as it does. That this is the case suggests that perhaps 
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the greedy match is the place to begin in the search for general complete matches 
and/or symmetric chain decompositions. 

This paper is organized as follows. Section 2 contains general information on 
the greedy match and basic notation used in the paper. Sections 3 and 4 contain 
the major results of this paper, stated above. Sections 5 and 6 contain two in- 
volved proofs to theorems in Sections 3 and 4, and Section 7 gives remarks and 
conclusions. 

2. Notation and Preliminary Results 

The greedy match for G = (U, V) was defined by matching the elements of U into 
the elements of V. If this is denoted U + V, then one might ask about the greedy 
match V + U. In Example (1. l), the same match results. In fact, this is always the 
case. 

LEMMA 2.1. For any bipartite graph G = (U, V), the greedy matches U + V and 
V + U are the same. 

Proof. As with most of the proofs in this paper, we proceed by the method of 
minimal counterexample. Let u E U be the first element of U for which the matches 
U+Vand V+Udiffer.Thatis,eitheru+vinU+Vbutv+uin V+Uoruis 
unmatched in U + V but is matched in V + U. These two cases may be handled 
simultaneously by appending an element co as the last element of V, if necessary, 
and matching u to cc if u is unmatched in U +V. There are two possibilities to 
consider: 

Case 1. v + u because v + u’ which comes before u in U. 
Since there is an edge u’v but u’ is not matched to D in U + V, there must be a 

v’ in U appearing before v such that u’ --*I/ in U --) V. By minimality of u, we must 
have that v’ + u’, a contradiction. 

Case 2. v + u because for some Y’ coming before v’, v’ + u in V + U. Since there 
is an edge uv’ but u + v’, there must be a u’ coming before u in U such that u’ + v’. 
Again, by minimality of u, v’ + u’ in V + U. This second contradiction completes 
the proof. 

Let P be a ranked partially ordered set (in this paper, all partially ordered sets are 
ranked and have linearly ordered level sets). As noted in the introduction, if there 
is a match between each pair of adjacent levels in P then this set of matches, which 
by abuse of notation we will refer to as a match, induces a decomposition of P into 
disjoint chains. An element u will be called maximal (minimal) with respect to a 
match if u is the element of largest (smallest) rank on a chain. Equivalently, u is 
maximal (minimal) if u is not matched in the next higher (lower) level. 

A match in P is called complete if the associated matches between successive 
levels are all complete. Obviously, a match is complete if it never happens that the 
lower of two adjacent levels contains maximal elements while the higher contains 
minimal elements. If P is rank unimodal (the level sizes of P increase to a maximum 
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and then decrease), then a match is complete if all minimal elements are below the 
largest level (or all maximal elements are above the largest level). 

Write u + v with respect to a match if the match takes u to U. We say u covers U, 
denoted v . > U, if u 2 u and v and u are on adjacent levels. If u + u, then clearly 
v ‘> u. 

Given two partially ordered sets P and Q, a natural order on the level sets of 
P x Q is obtained lexicographically: given (u, v) and (a’, u’) on the same level of 
P x Q, we say (u, v) precedes (a’, u’) if the rank of u is less than the rank of U’ or 
if u precedes U’ in P or if u = u’ but v precedes U’ in Q. The greedy match is not 
well-behaved for product posets in the sense that if P and Q both have complete 
greedy matches, then P x Q does not necessarily have a complete greedy match. 
For example, the greedy match in 

6% 3) 0. 3) (c, 1) Cc. 2) (2.2) 

a b 1 2 
(a. 1) (a, 2) (b, 1) (b, 2) 

(2.3) 

A ranked partially ordered set P is called a symmetric chain order (SYM) or is said 
to admit a symmetric chain decomposition if P can be expressed as a union of 
disjoint saturated chains which are all symmetric about the midlevel of P. A 
saturated chain is one in which there is an element from each level between the 
minimal and maximal elements of the chain. If a symmetric chain decomposition is 
induced by the greedy match, call P a greedy SYM. 

THEOREM 2.4. Zf P is a product of chains, then P is a greedy SYM. We defer the 
proof of Theorem 2.4 to Section 5. 

COROLLARY 2.5. The Boolean algebra B,, is a greedy SYM. 
Proof. B,, is the product of n 2-element chains. 

In this paper, we are primarily interested in Young’s lattice. We introduce the 
following definitions and notation. A partition is a finite nonincreasing sequence of 
nonnegative integers called parts. We allow parts of size 0. If a partition 1 has m 
parts, denoted 121 = m, we will write 1 = (A,, Iz,, . . . , A,). We say 1 is a partition of 
n if A, + 1, +. . . + & = n, and denote this [IA I( = n. 

Young’s lattice for a partition 1, denoted gl, is the set of all partitions 
,U such that 1~1 = 1111 and ,u, < ;I, for 1 < i < (Al. The order relation on ?VA where 
Ill=m is 

,u < u if and only if pi ,< v, for 1 < i < m. 
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The level sets of +Yu, are loaded lexicographically. If i, has m parts all of size n, write 
A= n”‘. If m = 2 or m = 3 we may write Iz = ab or I = abc. 

If 1 and p both have m parts, define the difference of I and p componentwise: 

A -P = (4 -A > 22 - P2, * . . , L -cl,). 

Define the n-complement of 1 in a rectangle nm by 

X=(n-A,,n-A, -,,..,, n-l,). 

For n > 1,) X is a partition and 11 Xl1 = mn - 111 I(. 

3. The Greedy Match in W,,, 

The greedy match has many nice properties in +Y”,,,. Several are listed in the 
following proposition. 

PROPOSITION 3.1. 

(i) ZfA,,,>OandO<kk&,,, thenIZ+pzfandonlyifA-k”+p-k”. 
(ii) A + p if and only if fi + I. 
(iii) Zf 1 is maximal, then A, = n. 
(iv) ZfJ.=(n,n ,..., n,n-l,A ,,..., A,,,) for some j > 2, then 1, is not maximal. 
(v) Zf I is minimal, then A,,, = 0. 

(vi) Zf I isnot maximalin g,,,,, then if 1+1’ in g,,,, 1-1’ ing’,,for any k 22;. 
Proof. Parts (i) and (ii) follow from minimal counterexample arguments. In (ii), 

for example, suppose the conclusion is false and let I be a minimal counterexample. 
That is, let Iz be the partition of smallest rank and lexicographically first on that 
rank such that A--) (u but ji + X Since X * > ji if p . > 1, either ii + I’ which precedes 
I or v +X where v precedes ji. In the first case, by minimality of I, X’ +p = I( 
contradicting 1+ p. In the second case, v +x implies that ij * > 1. Since 1. > v, 
X.>CLandvprecedesji,forsomej>i,vi=~j+l1,vi=jii-1andv,=kifk#i 
or j. Consequently, V and p differ in positions m - i and m -j, with m - i > m -j 
and Vm -, = pm _ j - 1. Thus, I precedes p. Since ,471 V, there must be a Iz’ preceding 
1 such that 1’ + v’. By minimality of 1, v +x’ contradiction v + 1 This completes 
the proof of part (ii). 

For (iii), if 2, < n, let p = (A, + 1, A,, . . . , A,). Since p * > Iz and ~1 covers no 
partition preceding 1, either A + ~1 or L + p’ which precedes p. A similar idea works 
for parts (iv) and (v). Part (vi) is an easy consequence of part (i). 

If m = 1, g,, , is a chain of length n + 1. With two parts, ‘9,,* is also fairly trivial. 

THEOREM 3.2. gu,, is a greedy SYM. 
Proof. The explicit characterization of the greedy match in $YnZ is 

(0, b) --, 
I 

(a+l,b), ifa-b isevenandacn 
(a, b + l), if a -b is odd. 
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To verify this characterization, by Proposition 3.1(i), it is enough to show that for 
2k<n, (2k,0)+(2k+1,0)+(2k+l,l). Clearly, (O,O)+(l,O)+(l,l). Suppose 
(2k - 2, 0) +(2k - 1,O) +(2k - 1, 1). By Proposition 3.1(i), (2k - 1, 1) + 
(2k, 1) + (2k, 2). Thus, (2k, 0) + (2k, 1). Since (2k, 0) is not maximal, (2k, 0) + 
(2k + 1,O). Also, (2k + 1, 1) covers both (2k, 1) and (2k + 1,O). Since (2k, 1) + 
(2k, 2), (2k + 1,O) +(2k + 1, 1). 

The chains in %Yn2 are now easy to describe. Minimal elements are of the form 
(2k, 0) and the chain of (2k, 0) is 

(2k,0)+(2k+ 1,0)+(2k+ 1, l)-+***+(n,n -2k), 

which is clearly symmetric. This completes the proof. 

An interesting property of the greedy match in ?V”2 is that if 2, > A2 + 2, then 
i, + ~1 if and only if 1 - (2,0) -+ ~1 - (2,0). Given this property and Proposition 
3.1(i), the entire match can be built up from the two cases (0,O) + ( 1,0) and 
(LO) -+(A 1). 

The greedy match gets more complicated as the number of parts increases. With 
three parts, the chains are no longer symmetric as the case 9Yy33 shows. 

The greedy match in g/33 is 
333 

I 
332 

/ 
322 331 

/ / 
222 321 330 

I I I 
221 311 320 

I x 
211 220 310 

I I I 
111 210 300 

\ \ 
110 100 

(3.3) 

\ 
100 

I 
060 

It is always true, however, by Proposition 3.l(ii) that chains are either symmetric or 
they come in pairs which are symmetric about the midlevel of g’,,. 

The partitions (0,O) and ( 1,O) have the property that 1, - A2 < 2. An extension 
of this property plays an important role for the greedy match in gn,,,. Call a 
partition I irreducible if for some i c m, Ai - A,+ i < 2. Given the partitions 1 and 
p with m and n parts respectively, if 1, 2 pl, let Ip denote the partition with m + n 
parts (4,. . . ,L,P,, . . . , pL,). If ;1 is irreducible, then there is a smallest j such that 
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4 - 4, I < 2. Write I = pv where v = (3,i, . . . , A,,,) (if j = 1, p = 8). For example, if 
1 = (9,7,3,2,0), then ~1 = (9,7) and v = (3,2,0). 

THEOREM 3.4. Suppose A is not irreducible, 1, Gn, (A( = ml, u is irreducible, 

kn2,,ah+29 IPI= m2 and p 4 p’ as an element of Ynrn2. Then 1p + Ap’ as an 
element of Ynm,+m2. 

The proof of Theorem 3.4 is given in Section 6. 

COROLLARY 3.5. Zf 1 E Y,,, is irreducible and I +A’, then 1’ is irreducible. 
Proof. We use induction on m. By inspection, the corollary is true for m = 2; 

suppose the corollary is true for m < k and JIZ[= k. If 1, = &, then A; - & < 1 < 2 
so A’ is irreducible. If I, - A, = 1, then by Lemma 3.1 (iv), (vi), I, = A; and again 
A; - A; < 1 < 2. If 1, - I, >, 2, then I = pv where p = (A,) and v = (A,, . . . , A,), 
and v is irreducible. By Theorem 3.4, 1+ pv’ and by induction, v’ is irreducible so 
I’ is also irreducible. 

COROLLARY 3.6. Suppose iA]= m, , IpI = m,, Iv1 = ms, A1 < n, A,,, , > p, + 2, 

c1 m2 > v, + 2, 1 and v are not irreducible but p is irreducible. Then if p + p’ as an 
element of Ynm2, Ipv -+Ap’v as an element of Ynm,+m2+m3. 

Proof. By Theorem 3.4, we must show that pv + p’v as an element of Y”,,+ mj. 
7 Consider ~1 v = Q?’ in Y,,mZ+m3. Since ? is not irreducible but ii’ is, and since J’ + j 

in Ynm2, by Theorem 3.4, @’ + VP in Y,,,,,Z+m, and so pv + ,u’v as desired. 

As an example, consider 1 = (9,7, 3,2,0) = (9,7)( 3,2)( 0). Since (3,2) + (3,3) in 
Yyn2, by Corollary 3.6, rl. +(9,7,3,3,0). 

NowletrZ*=(2m-2,2m-4,..., 2,0) (which depends on m of course). 1* is 
the smallest non-irreducible partition with m parts. If 1 is not irreducible, then 
Iz - 1* is a partition. 

COROLLARY 3.7. ZfA is not irreducible, then I + p if and only if A - A* + p - A*. 
Proof. An easy minimal counterexample argument. 

Corollary 3.7 is a very powerful inductive tool which is now used to prove the 
major results of this paper. 

THEOREM 3.8. The greedy matches in Y’,, and Yn4 are complete. 
ProojI Since chains Y,,, are either symmetric or come in pairs that are symmetric 

about the midlevel, the theorem will follow if we show that every maximal partition 
is at or above the midlevel. If Y,,, has an even number of ranks, then there will be 
two levels of equal size rather than one midlevel. In this case, there can be no 
maximal elements on the lower of the two levels. Thus, in general, the greedy match 
will be complete in Y,,, if for any maximal 1, (II II 2 [mn/21 where r x 1 is the 
nearest integer greater than or equal to x. 

By Proposition 3.1 parts (iii) and (iv), if I is maximal in Y,,,,,, then 1, = n and 
&#n-l.If&=n,then II111,2 > n so 1 is at or above the midlevei in Yns or Y,+ 
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If A2 < n - 1 and A. is irreducible, then 12 = pv +pv’ by Theorem 3.4 so 1 is not 
maximal in this case. If A is not irreducible, then by Corollary 3.7, 1 is maximal in 
?V,,,,, if and only if 1 - A* is maximal in ?V(,, + Z _ &),,, . We now proceed by induction 
on n. The theorem can easily be checked for ?Y”,,, if n = 1 and is vacuously true for 
n < 1. So assume that the theorem is true for gcn + 2 _ 2mj,,, . Then if 1 is maximal in 
g nm7 

11~ -q2 rrntn +2-2m)/21 

SO 

II+ be +2--2m)Pl + llJ*ll 
a rm(n+2-2m)/21 +m(m-1) 

2 rN21 , 

as desired. 
Unfortunately, this proof breaks down if m > 5. The problem is that if 1, = n, it 

no longer follows that [IA II > rmn/21 . In fact, Corollary 3.6 can be used to know 
that the match is not complete if m > 5, for it can be shown that in ?.?Y,,+ the 
partition (a, a, b, b) matches to (a + 1, a, 6, b) if a - b > 2 and a < n. This partition 
is maximal if a = n > b + 2. By Corollary 3.6, (n, n, 6, b, 0) is maximal in +Y,,s if 
n - b > 2 and b > 2. Consequently, (9,9,2,2,0) is maximal in ?V+. But 
l/(9,9,2,2,0) )I = 22 < 23 = [9*5/2 1 , Thus, the greedy match is not complete in 
gg5. In fact, (9,9,2, 2, 0) is the only maximal element on level 22 and its 
9-complement, (9,7, 7,0,0), is the only minimal element on level 23. 

In general, I = (n, n, 2(m - 4), 2(m - 4), 2(m - 5), 2(m - 6), . . . ,2,0) is maximal 
in g/,, and below the midlevel provided n 3 2m - 2 if m is even or n > 2m - 1 if 
m is odd. Thus, for m > 4, g,,, is not complete via the greedy match if 
n 2 r(4m - 3)/21 . This bound is not the best possible for large m. 

4. The Greedy Match in WdC 

If 1 # nm, then the greedy match in gA is more complicated than was the case in 
Section 3. For example, there is no analog for the complement of a partition in gA. 
We do have a partial generalization of Proposition 3.1, however. 

PROPOSITION 4.1. Let A = (A,, AZ, . . . , A,), where I, > 0. 
(i) ~~~in~~~ifundonlyif~-k~~v-k~in~~forunykwithO~k~~~. 
(ii) If p is minimal in +YA, then p, = 0. 

(iii) If p is maximal in +YA, then p, = 1,. 

The proof of Proposition 4.1 is straightforward. We give three more general 
properties of the greedy match in gu,. 
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PROPOSITION 4.2. If 1 = (A,, &, . . . , A,,,) with 1, > 0, then the greedy match in 
+YA is the same as the greedy match in Y’,, up through level k, where 
k = min(22, + 1,31, + 2, . . . , ml, + m - 1). 

Proof. So long as the level sets are the same, the matches in %YL and %Y’,, must 
agree. The first element in @Yv,, which is not in %A is of the form 
p = (a, a, . . . , a, 0, . . . , 0) with ja’s, where Jj- , > a but lj = a - 1. This occurs at 
level aj = jdj + (j - 1) + 1, and the result follows. 

PROPOSITION 4.3. If I = (A,, &, . . . , A,,,) with A,,, > 0, then the greedy match in 
@YA is complete from level k to level 11AII, where 

k=2&+1,+.. * + 1, = (112 11 - (A, - A,). 

Proof If 11~1 \I > k, then ~1, > p2. It now follows easily by the method of minimal 
counterexample that the match is given by p -‘p’ where & = pl + 1 and that this 
match is complete. 

PROPOSITION 4.4. Let p E ??I1 where 1 = (n, AZ, . . . , A,,,) with 1, > 0. Zf p is not 
minimal in +Ynrn, then p is not minimal in gy,. 

Proof If ~1 is not minimal in gnrn, then for some v, v + p. If p . > v, then v E gl. 
By the method of minimal counterexample, v cannot map to a predecessor of ~1 in 
gL so if v + ~1 in gL, some predecessor of v must match to p. 

The following is the main theorem of this Section. 

THEOREM 4.5. The greedy match is complete in CV& and gtiC. 
Proof We will show that the match between any two adjacent levels is complete 

by showing that there cannot be a minimal element in the higher level if there is a 
maximal element in the lower level. The proof is in three parts, the first of which 
handles the case ?.?Y&. 

PART 1. The greedy match is complete in ?Y&. 
Proof Maximal elements in ‘ZV& are of the form (a, v) and minimal elements are 

of the form (u, 0) by Proposition 4.1 parts (ii) and (iii). Thus, the maximal 
partitions are all of rank greater than or equal to that of the minimal partitions. 
Note that this shows more than that the match in gab is complete: dyl16 is also rank 
unimodal. 

PART 2. Zf (a, k, 0) in gdC is maximal on level n, then there are no minimal 
partitions on level n + 1. 

Proof. If k = 6, then all partitions on level n + 1 have three nonzero parts. If 
k~b,since(a,k,O)~(a,k+1,O),itmustbethat(a-1,k+1,O)~(a,k+1,0). 
Any partition (u, v, 0) on level n is of the form (a - i, k + i, 0), so by induction on 
i it follows that if u < a, then (u, v, 0) + (u + 1, v, 0). As a consequence, n must be 
evensince(u,u-1,O)willnotmatchto(u+1,u-l,O)ifu~b.Nowif(u,v,O)is 
on level n + 1, then u > v (since n + 1 is odd) and (u - 1, v, 0) + (u, v, 0) implies 
that (u, v, 0) is not minimal. 
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PART 3. The match between level k and level k + 1 is complete in gab=. 
Proof. Assume level k has maximal elements. We will show that level k + 1 does 

not have minimal elements. If (a, v, 0) is maximal, we are done by Part 2, so assume 
every maximal element of level k has three nonzero parts. 

Let L,(1) denote the number of partitions on level n in ?VA. Note that 
L,(a, 6, c) = L,(a, b, 0) + L, _ 3 (a - 1, b - 1, c - 1). (A similar result holds for gen- 
eral 1). By way of induction, assume the greedy match is complete in gU,, if 
u + v + w < a + b + c. By Proposition 4.1(i), if ~1 is maximal in gabbc and ~1~ > 0, 
then p - I3 is maximal in go _ ,, b- ,, c _, . Since this second poset is complete, 
L,-,(a - 1, b - 1, c - 1) CL,- 3(a - 1, b - 1, c - 1). 

If (4 u, 0) + (u, 0, 1) in gab=, then (U - 1,v - 1,0) is minimal in gG-,,b -,l,r-,. 
Since there are no minimal elements on level k - 2 in g4/, _ i, b _ r, c _ , , if follows that 
in gynbc, partitions with less than three nonzero parts on level k match to partitions 
with less than three nonzero parts on level k + 1. To show the match is complete, 
we must show that Lk + ,(a, b) < Lk(a, b) (so that there are no minimal partitions 
on level k). 

It is easy to see that if L,, , (a, b) > L,(a, b), then n is odd and n < min(a, 2b). 
Also, if n c min(a, 26) then L,, i (a, b) 2 L,(a, 6). If n < min(a, 26), then 
n-3<min(a-1,2(6-l)) so if L,-,(a,b)>L,(a,b), then L,+,-Jk(a-k, 
b-k)>L,-,Ja-k,b-k)forallk>b.But 

L,-,(a-l,b-l,c-l)= f: Lk-3i(a-i,b-i) 
I=1 

so if Lk+ ,(a, b) > L,(a, b), then 

L,-,(a-l,b-l,c-l)< f: Lk+1-3i(a-i,b-i) 
i= 1 

=L,-,(a - 1, b - 1, c - 1). 

This contradicts the condition L,_,(a - 1, b - 1, c - 1) > L,-,(a - 1, b - 1, 
c - l), so it must be that Lk + ,(a, b) < L,(a, b). This completes the proof. 

5. A Proof of Theorem 2.4 

We will prove slightly more: if P satisfies a certain regularity condition and P is a 
greedy SYM, then C,,, x P satisfies that same condition and is a greedy SYh4. The 
condition is as follows: 

If there are two chains (induced by the greedy match) 
u, +u*+- . . +u, and v, +vl+. . .+v,,, such that u, and vk have the 
same rank, u, precedes ok, uj+ , precedes ak + , and ok + , covers uI, 
then n-jam-k. (5.1) 
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Pictorially, if 
uj + 1 ,,Vk+l 

t t .* 
.* (5.2) 

ui Vk 

then uk is at least as close to the top of its chain as uj is to the top of its chain. 
Certainly, condition (5.1) is vacuously true if P is itself a chain. 

Now suppose P satisfies (5.1) and P is a greedy SYM. We shall prove first that 
C, x P is a greedy SYM and then that C,,, x P satisfies condition (5.1). To show 
that C, x P is a greedy SYM, we construct the match in C,,, x P. Given an element 
(~~,u)inC,xP,leto=~,whereu,-,~~~~u~~~~~~u,isthechainofuinducedby 
the greedy match in P. We claim 

(Ci, 4 = cc,, u, ) --, I (Ci,Uj+l), ifi+j-l<n 
tci+ 19 uj), ifi+j-12n,i<m. 

The picture corresponding to condition (5.3) for m = 3 and n = 4 is 

(c,, v4) 

/ 
(9, v,) cc,, v,) 

(5.3) 

(5.4) 

Given that property (5.3) holds, the proof of the theorem reduces to the usual 
proof that the product of two symmetric chain orders is a symmetric chain order 
(the chains in (5.4) are symmetric in C, x P). 

To show that (5.3) holds, suppose not and let (ci, uj) be the minimal counterex- 
ample. By minimality of (ci, uj), nothing preceding it can match to the element 
proposed for it by (5.3). So if property (5.3) fails, it must be that (ci, vi) matches 
to a predecessor of the match proposed for it by (5.3). Suppose (ci, vi) matches to 
tcz, u’)- (If tci, uj) +tci+ 13 J u.) then either this is in agreement with (5.3) or an easy 
contradiction arises.) Now u’ is on some chain, so write u’ = u; + i , and assume this 
chain has length n’. 

If i +j - 1 < n, then (ci, u; + ,) precedes (ci, uj+ ,) (the proposed match of (ci, vi) 
from (5.3)), so u;, i precedes Vi+, and ub + , covers u,. Consequently, there must be 
a u; preceding uj such that u; + vi+ i in P. Since both (ci- , , u;, i) and (ci, u;) 
precede (ci, uj), by minimality, one of them matches to (ci, trk+ i) - a contradiction. 
(Note that the case i = 1 is just as trivial.) 

If i +j - 1 2 n, again cases i = 1, k = 0, i = m, etc. are easy to handle. 
If (c,- , , vi+ i) and (cl, u;) both precede (ci, vi), then again a contradiction 

arises, so assume uj precedes u;. This forces vi+ , to precede u; + i as well, so we 
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have the figure 
VJ + 1 u’k + I 

3 O’k 

in P. By condition (5.1), n -j 2 n’ - k, so if i +j - 1 > n, then i + k - 1 2 n’. But 
then (c, - , , v;+ ,), which precedes (q, Vi), must match to (ci, u;, ,) and this 
contradiction establishes the result. 

To show that C,,, x P satisfies condition (5.1), we may use the fact that Cm x P 
satisfies condition (5.3). Now suppose (ci, uj) +(c~, u,?), (ck, u,) +(ck., u,.), (ci, u,) 
precedes (ck, v,), (ci’, u,,) precedes (c~, u,,) and (Q, u,,) covers (ci, u,). Then either 
k’ = i + 1 or k’ = i. 

CASE 1. k’=i+l. 

This forces ul, = uj and by (5.3), z+ = uj+ , and u, = uj- , . It is easy to see that the 
length of the chain of (c,, uj) is m + n + 1 - 2i, and the length of the chain of 
(cl+,, U/-1) is m + n + 1 - 2(i + 1) where n is the length of the chain of u. So 

m+n+l-2i-(i+j)=m+n+l-3i-j 

>m+n-l-3i-j 

=m+n+l-2(i-l)-(i+l+j-1) 

verifies condition (5.1) in this case. 

CASE 2. k’ = i. 

Since i < i’ < k’ = i and i < k < k’ = i, i = i’ = k = k’. The figure is therefore 
(Ci P u + 1) (‘G,Vk +l) 

I/l 
(CIT uj) @I. ok) 

which implies 
uj + I ok + I 

I// 

(5.6) 

(5.7) 

9 ok 

so n, -j 2 n, - k by condition (5. l), where n, is the length of the chain of u and n, 
is the length of the chain of u. 

The length of the chain of (ci, uj) is m + n, + 1 - 2i, the length of the chain of 
(c,, ok) is m + n2 + 1 - 2i and again 

m+n,+l-2i-(i+j)=m+l-3i+n,-j 

am+l-3i+n,-k 

=m +n,+ 1 -2i-(i+k). 

This completes the proof that C, x P satisfies condition (5.1). 
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An easy induction now shows that any product of chains satisfies condition 
(5. l), from which Theorem 2.4 follows. 

6. A Proof of Theorem 3.4 

Let m = m, + mz. We proceed by induction on m, noting that if Theorem 3.4 is 
true for all m, + m2 c m, then Corollary 3.5 is true in ‘Ynk if k < m and Corollary 
3.6 is true for all llzl+ IpI+ [VI cm. 

If Theorem 3.4 is true for m, + m, <m but false if m, + m2 = m, let 1~ be the 
minimal counterexample where (II = m,, Iz is not irreducible, [cl\= m2 and p is 
irreducible. Let p +p’ in ?Yn,,,*. As usual, there are two cases to consider. 

CASE 1. Ap + lp’ because Ip + v which precedes Ap’. 

Since v, > (n~)~ for all i, it must be that v = lq’ for some partition q’ in gnm2 
such that q’ . > p, for if vi > li for any i < m,, then v would not precede Ap’. 
Since q’ precedes cc’ but p +p’, there must be an q in g(nm2 with q +tf’, 
where q precedes p. The minimality of Ip is now contradicted unless q is not 
irreducible. If q is not irreducible, then by Corollary 3.5, q’ is not irreducible. 
Since q’ *> q and q’ .> p, for 1 < i <m,, q: = max(qi, pi). For some smallest j, 
~j--,+,<2.Itmustthenbethat~j--j+I=1,~:=~iifi#j,andn;=~,+1. 
If we write ~1 = p’p2, where cc’ = @,, . . . , pjLi- i), then by Theorem 3.4 (true for 
m = m2), p +p’(p*)‘. By Proposition 3.l(iv), (p*); = (p’), so & = pj. But then 
pi = qi for 1 < i <j and p; < (pi); which contradicts the assumption that q’ 
precedes p’. 

CASE 2. Izp + Ap’ because v + 1~’ for some v preceding Ip. 

If v + Izp’, then either v = lzq where p’ covers q or v = VP’ where 1 covers q. 
The first subcase proceeds similarly to Case 1: there is an immediate contradic- 

tion if q is irreducible. If q is not irreducible but CL’ is, then for some j, 
qi-qj+,=2,&=qr if i#j+l,pj+i=tfi+,+l. But then by Corollary 3.6, 
p=fP;,.* .,/+LP(+w.., &,,,) (this follows from the fact that (a, a) + 
(a + 1, a) in 9Yn2). We now have a contradiction because the forms of ~1 and q 
indicate that p precedes q. 

In the second subcase, an immediate contradiction arises if q is not irreducible. 
If q is irreducible and 1 covers q, then for some j, qj - qj+ , = 1. If j = 1, then 
by Proposition 3.l(iv), J., - A2 < 2, a contradiction. If j > 1, let q = q’q * 
with q’ = (q,, . . . , q, _ ,). Then v = q ‘qzp’ where q ’ is not irreducible and v 
precedes 1~. By minimality of 1~1, v +qi(q*p’) where (q’r’)’ is the match of 
q*m in 9”, -,+ I. Since q: = q$ + 1, Proposition 3.l(iv) again gives that 
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(r12P’)i-(t12P’)!?c2 so Aj-Aj+l < 2. This final contradiction completes the 
proof. 

7. Remarks 

Closely related to ?V,, ,,, is the partially ordered set M(n) of partitions with nonzero 
parts all distinct and largest part <n. (An alternative definition for M(n) is that it 
is the poset of order ideals of +Vcn _ 1j2.) As an example, 

4321 

I 
4320 

/\ 
4210 4300 

I\I 
3210 4200 

I/I 
M(4): 3200 4100 

I/I 
3100 4000 

(7.1) 

I\I 
2100 3000 

\/ 
2000 

I 1000 
I 

0000 
Like g,,,,,, M(n) is rank unimodal, rank symmetric and strongly Spemer [5]. Also 

like Y,,,,,, there is no known explicit match between levels, and it is not known if 
M(n) is a symmetric chain order. 

The greedy match in M(n) is not as regular as in g,,,. Chains do not occur in 
pairs symmetric about the midlevel. The poset M(n) is complete via the greedy 
match for 1 < n ,< 11 but not for n = 12, and presumably, not for n > 12. Surpris- 
ingly, the greedy match in M( 12) is complete through the midlevel (rank = 39) but 
fails to be complete between levels 40 and 41. 

The condition (5.1) in Section 5 cannot be removed. For example if the Hasse 
diagram for P is 

P: 

4 

(7.2) 
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and Q = CJ x P, then the greedy match in Q is 

:I: i . i . (7.3) 

The proof that C,,, x P is a greedy SYM can be slightly strengthened to show that 
Q x P is a greedy SYM if P is a greedy SYM satisfying condition (5.1) and Q is a 
greedy SYM satisfying a similar condition: 

If there are two chains in Q (induced by the greedy match) 
241 +uz+* *. -+u, and v, ++-+a * *+v, such that uj and vk have the 
same rank, u, precedes ok, Uj + , precedes vk + , and Uj+ , covers uk, 
then n-jam-k. (7.4) 

This result can not be used inductively, however, because P x Q need not satisfy 
property (5.1) or (7.4). 

It is proved in [6] that Yabc is rank unimodal. This result together with Theorem 
4.5 implies that Yabc is Sperner. If [Al> 3, YA is not necessarily unimodal [6]. It is 
not known whether YA is Sperner or if there is a complete match in Y’, for IA1 > 3, 
or even whether the greedy match is complete for YA in the case IA.1 = 4. 

The greedy match in Yn3 can be easily modified to produce symmetric chains, but 
no such easy modification has been found for Y,+. In fact, symmetric chains in Yvn4 
do not seem to resemble greedy chains much at all. For example, the greedy match 
in YE,,, has the property that if 3, +p in Y,,,, then I -PP in YU,, for any k > n. There 
does not appear to be a symmetric chain decomposition in Y,,4 with this property. 

Whereas it is disappointing that the greedy match fails to be complete in Yn5, it 
is intriguing that the greedy match should work as well as it does. For example, the 
greedy match in YRs is complete. The maximum level size in Yyss is 78 and the 
maximum number of covers of any given partition is 5. When bipartite graphs of 
this form are constructed at random in computer runs, even though complete 
matches occur frequently, complete greedy matches do not, even if the vertices at 
one level are reordered lexicographically with respect to the vertices they cover on 
the other level. 

Even though the greedy match is not complete in Y,,,, the fact that irreducible 
partitions match to irreducible partitions might lead one to conjecture that the set 
of all irreducible partitions in Y,,, form a rank unimodal, rank symmetric subposet. 
In fact, this conjecture follows easily from the KOH identity in [7]. Since the 
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subposet of nonirreducible partitions in ?Y,,, is isomorphic to gCn- Zm+2jm, this 
suggests an inductive approach different from the approaches in [2] and [S]. This 
idea is very reminiscent of the approach used by Kathy O’Hara [3] in her 
constructive proof of the unimodality of +!I,,,,,. 
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