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LAGRANGE INVERSION OVER FINITE FIELDS 

JOHN GREENE 

A finite field analogue of the Lagrange inversion formula is given 
and applications to the derivation of character sum identities are dis­
cussed. 

1. Introduction. In this paper we discuss character sum analogues 
for Lagrange inversion in one or several variables over finite fields. We 
then use these techniques as tools for deriving character sum identities. 
We begin with a short description of classical Lagrange inversion. 

If f(z) and g(z) are formal power series where g(O) = 0 but g'(O) -=I= 0, 
the inversion problem is to write f as a power series in the variable g( z ). 
The Lagrange inversion theorem gives the solution to this problem. 
Specifically, the result is 

00 

f(z) = /(0) + L ckg(z)k, 
k=l 

where 

(1.1) f'(z) ck= Res~~-
z kg( z)k' 

or alternatively, 

(1.2) c = Res f(z )g'(z) . 
k k g(z)k+l 

Simple proofs of these results can be found in [7] or [10]. These references 
also contain multivariable generalizations. 

Recently there has been much work in developing q-analogues for 
Lagrange inversion, for example, see [l], [3] or [4]. Lagrange inversion is 
useful in special functions and comes up frequently in deriving transfor­
mations and summation theorems as in [5] or [6]. 

This paper is organized as follows. Theorems analogous to Lagrange 
inversion are derived in §2. The strengths and weaknesses of the analogy 
are discussed in §3. In §4 we derive several character sum identities from 
these theorems. We set notation in the remainder of this section. 
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Throughout this paper, GF( q) is the finite field with q = pn elements, 
where p is an odd prime. The capital letters A, B, L, M, N and R and 
Greek letters x and 0 will denote arbitrary multiplicative characters of 
GF(q). The quadratic character will be denoted by <p and the trivial 
character by e. All multiplicative characters are defined to be 0 at the 0 
element of GF(q). Define Aby AA= E. We define a function 8 on GF(q) 
by 

(1.3) 8(x) = {l, if x = 0, 
0, if x * 0, 

and on multiplicative characters of GF(q) by 

( 1 .4) 8 ( A ) = { 1, if A = E' 

0, if A * E. 

Note that 8(x) = 1 - e(x). WriteI:x todenotethesumoverallx E GF(q) 
and Lx to denote the sum over all multiplicative characters of GF( q ). Let 
t = e 27ri / p and set Tr equal to the trace map from GF(q) to GF(p). 

We will make use of the orthogonality relations [9, pp. 89, 90] 

(1.5) [x(x) = (q - 1)8(x) , 
x 

(1.6) Lx(x) = (q - 1)8(1 - x), 
x 

and 

(1.7) L:rr<xy) = q8(y). 
x 

The Gauss sum of a multiplicative character A is defined by 

(1.8) G(A) = [A(x )rr<xJ, 
x 

and the Jacobi sum of A and B is defined by 

(1.9) J(A, B) = [A(x)B(l - x). 
x 

Finally, some easy changes of variables in (1.9) imply 

(1.10) J(A, B) = J(B , A) 
and 

(1.11) J(A, B) = B(-l)J(AB, B). 

2. Inversion over finite fields. Suppose { / 1 ( x ), .. . , fq( x)} is an 
orthonormal basis for the vector space of all complex valued functions 
over GF(q) with respect to the inner product 

(2.1) ( /(x) , g(x)) = Lf( x)g(x). 
x 



Thus, 

(2 .2) 
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~f;(x )Jj(x) = { ~: if i = j , 

if i * j . 
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Let M be the q X q matrix (/;(x)) iJ. Then (2.2) implies MM* = /, 
where M* is the conjugate transpose of M. Consequently, M*M =I 
from which it follows that 

q 

(2.3) L: fk ( x )fk ( y) = 8 ( x - y). 
k=l 

If f(x) is any function from GF(q) to C, the orthogonality relations (2.2) 
and (2.3) imply 

q 

(2.4) f(x) = L cdk(x) , 
k=l 

where 

(2.5) 
x 

LEMMA 2.6. Let f(x): GF(q) ~ C and g(x): GF(q) ~ GF(q). Then 
for fixed x, 

q 

Lf(y) = L cdk(g(x )), 
k=l 

where 

ck= L:f(y )fk(g(y )), 
y 

and the sum on the left hand side extends over ally such that g( y ) = g( x ). 

Proof. With ck defined as above we have 
q q 

L cdk(g(x )) = L Lf(y )fk(g(y ))fk(g(x )) 
k=l 

as desired. 

k=l y 

= L:f(y )8(g(x) - g(y )) = L: f(y) 
y y: 

g(y)=g( x) 

The two classical examples of orthogonal bases for complex valued 
functions over GF( q) are the set of all multiplicative characters together 
with 8(x) , and the set of all additive characters. That these are in fact 
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orthogonal bases follows from (1.5) and (1.7). These sets can be made 
orthonormal by appropriate scaling so we have the following as corollaries 
to Lemma 2.6. 

THEOREM 2.7. Givenf(x): GF(q) - C and g(x): GF(q) - GF(q) , 
(a) 

where 

(b) 

L f(y) = 8(g(x)) L f(y) + Lcxx(g(x)) , 
v : 

g(y)°=g(x) 
y: 

g(y)=O 
x 

ex= (1/ (q - 1)) Lf(y )x(g(y )) , 
y 

L f(y) = Lc/Tr(g(x)y)' 
y: y 

g(y) = g(x) 

where er= (l / q)Lx f(x)t - Tr(g(xl.vl. 

The generalization to several variables causes no problems. For exam­
ple, in the case of functions of two variables it is clear that arguments 
similar to those in Lemma 2.6 will show the following. 

THEOREM 2.8. If f(x , y): GF(q) 2 
- C and g(x, y), h(x, y): GF(q) 2 

- GF(q) , then 

e(g(x,y)h(x ,y ))Lf(u,v) = Lcx.ox(g(x,y))O(h(x,y)), 
xJJ 

where 

1 " -cx.o = 
2 

L..J(x,y)x(g(x,y))O(h(x,y)) 
( q - 1) x,y 

and the sum on the left hand side extends over all ( u, v) for which 
g(u, v) = g(x, y) and h(u, v) = h(x, y). 

Of course, a similar result holds if the multiplicative characters in 
Theorem 2.8 are replaced by any orthogonal basis for the complex-valued 
functions over G F( q). 

3. Remarks. There are several drawbacks to Theorems 2.7 and 2.8. 
We will discuss them while making more explicit the analogy between 
Lagrange inversion and the results of §2. 
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The result in (1.2) can be restated 

(3.1) ck= C.T. z/(z)g'(z)g(z) - I- k 

where C.T. f ( z) is the constant term in the Laurent expansion for f ( z ). 
Note that if a function /(x): GF(q) - C is expanded as a character sum, 

(3.2) /(x) = /(O)o(x) + I:Cxx(x), 
x 

then 

1 
c, = --1 I: /(x). 

q - x .. o 

Inspired by this result, define the constant term of the function f ( x) by 

(3.3) 
1 

C.T./(x) = -
1 

L /(x). 
q - x*O 

With this definition, the constants ex in Theorem 2.7(a) are defined by 

(3.4) ex= C.T./(x)x(g(x)), 

which we contrast with (3.1). 
The conditions g(O) = 0, g'(O) -:I= 0 in the classical theorem imply that 

g(z) is one-to-one near z = 0. If g(x): GF(q) - GF(q) is one-to-one, 
then the sum on the right hand side of Lemma 2.6 reduces to a single term 
so with ck as in Lemma 2.6, /(x) = Lk=I ckfk(g(x)). Unfortunately, 
functions g: GF( q) - GF( q) which arise in practice tend not to be 
one-to-one. Consequently, for most practical problems, the summation on 
the left hand side of Lemma 2.6 is required. 

In the classical theorem, the coefficients ck are unique in the sense 
that if 

00 00 

LCkg(z)k= Ldkg(z)k 
k=l k=l 

in some neighborhood of z = 0, then ck= dk. The worst drawback to 
Lemma 2.7 is that the coefficients ck are uniquely determined only if g(x) 
is one-to-one. If g(x) is not one-to-one, the best that can be said is that if 

q q 

L ck/k(g(x)) = L dJk(g(x )), 
k=l k=l 

then ck = dk + hk where the coefficients hk satisfy 
q 

I: hJk(g(x )) = o, 
k=l 
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for all x. For example, if f(x) = o(l - x) and g(x) = x 2
, then Theorem 

2.7(a) gives 

(3.5) o(l - x) + o(l + x) = _!_1 l:x(x 2
). 

q- x 

If a is any element of GF(q) which is not a square, then 

q ~ 1 l:x(ax 2
) = o(l - ax 2

) = 0 
x 

for all x . Thus we have 

1 1 
--1 l:x(x 2

) = --1 2:(1 + x(a))x(x 2
) 

q- x q- x 

for all x in GF(q). The consequence of these remarks is that the classical 
technique of expanding a function in terms of another function in two 
different ways and equating coefficients does not generalize well to finite 
fields. 

4. Examples. In this section we give some short examples of Theo­
rem 2.7 and an extended discussion of the uses of Theorem 2.8 in deriving 
character sum identities. 

As a first example, if f(x) = A(l - x) and g(x) = x, then 

1 - 1 -
ex= --1 l:A(l - y)x(y) = --1J(A,x). 

q- q-
y 

By Theorem 2.7(a), we have 

(4.1) A(l - x) = o(x) + ~ Ll(A,x)x(x). 
q - x 

This useful result is an analogue for the binomial theorem, which can be 
made more striking by the introduction of "binomial coefficients" (see 
[8]) 

(4 .2) (~) = B(;l) J(A,B). 

With this definition, (4.1) becomes 

(4.3) A(l-x)=o(x)+ q~ 1 2:(~)x(-x) . 
x 

From (1.11) we derive a variant of (4.1), 

(4.4) A(l - x) = o(x) + ~ l:J(Ax, x)x(-x) , 
q - x 
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or, in terms of binomial coefficients, 

(4.5) A(l - x) = S(x) + q ~ 1 ~( ~x )x(x). 

Examples of the uses of (4.1) and (4.3) can be found in [8]. 
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For an example of Theorem 2.7(b), let f(x) = t Tr(ix) and g(x) = x 2• 

Since g(x) = g( -x) but x * -x unless x = 0, 

L J(x) = rr(2x) + r - Tr(2x) - S(x ) . 
g(y) = g( x ) 

On the right hand side of Theorem 2.7(b) we must calculate 

cy = .! l:tTr(2x- x2y) _ 
q x 

Note that c0 = 0. For y * 0, replace x by x + l / y to obtain 

cv = .! I:tTr(l/y-x2y) = .!rTr(l/y)I:r - Tr(x2y) 
. q x q x 

= .!rTr(l/y) I:r- Tr( xy) (l + <p(x)) = .!rr<lfy)L<p(x)t- Tr(xy) 
q x q x 

1 = -tTr(l/y>G(<p)<p(-y). 
q 

By Theorem 2.7(b) we now have 

(4_6) tTr<2xJ + r - Tr<2xJ _ S(x) = .!<p(-l)G(<p)L<p(y)rrc1;y+x2 y) _ 
q y 

Replacing y by l / y and using G( <p) 2 = q<p( -1) gives 

(4.7) L<p(y)rr(y+x2 / y) = G(<p)(STr(2x) + rr( -2x) - S(x)). 
y 

This is a character sum analogue for 

(4.8) fo00 fY e -y- x
2
1.v ;' = r( ~) e - 2x _ 

We now derive an identity from Theorem 2.8 and use it to obtain 
some more substantial character sum formulas. This example was inspired 
by [6] and follows that paper (by analogy) closely. 

Consider functions f(x , y) with the property that f(x, y) = 0 
whenever x = 0, y = 0, x = 1, y = 1 or xy = 1. Let 

x(l - y) 
g ( x' y) = 1 - xy and 

(1 - x)y 
h(x , y)= 

1 
. - xy 
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The mapping 

(g(x,y) , h(x,y)): GF(q) 2 ~ GF(q)2 

is one-to-one on the set of all (x, y) such that xy(l - x)(l - y)(l - xy) 
* 0. Consequently, by Theorem 2.8 we have 

f(x, y) = I:Cx.11 x(g(x, y ))O(h(x , y )), 
xJJ 

where 

1 " -cx. 11 = 2 .t..Jf(u,v)x(g(u , v))O(h(u,v)). 
(q - 1) u ,v 

Also, 

so 

f( 1 ~y , 1 ~ x) = L cx,11x(x)O(y). 
x.11 

If we denote 

then 

1 

( )
2 

Lf(x,y) byC.T.f(x,y), 
q - 1 x,y 

C.T. f( 1 ~ y, 1 ~ x) = c .. 
1 

--2 L f ( u' v) E (UV ( 1 - u )( 1 - v )( 1 - UV)) 
(q - 1) u ,v 

1 
--

2 
Lf(u,v) = C.T.f(x,y). 

(q - 1) u,v 

We have proved: 

THEOREM 4.9. If f(x , y): GF(q) 2 ~ C satisfies f(x, y) = 0 for all 
(x , y) such that xy(l - x)(l - y)(l - xy) = 0, then 

C.T.f( l ~ y, l ~ x) = C.T.f(x ,y ). 

This result is the analogue of the classical result [6, (3)) 

(4.10) ( 
x y ) 1 C.T.f -

1
- , -

1
- = C.T. l f(x,y). - y - x - xy 
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If we now take /(x, y) = A(l - x)B(l - y) L(x)M(y)AB(l - xy), 
then 

t( l ~ y, l ~ x) = e(l - x - y)AM(l - x)BL(l - y)L(x)M(y) 

= AM(l - x)BL(l - y)L(x)M(y) 

-8(1 - x - y)A(l - x)B(x). 

By Theorem 4.9 we have 

(4.11) LA(l - x)B(l - y)L(x)M(y)AB(l - xy) 
x,y 

= LAM(l - x)BL(l - y)L(x)M(y) 
x,y 

- L 8(1 - x - y)A(l - x)B(x) 
x,y 

= J(AM, I)J(BL, M) - J(A, B). 

From ( 4.4) it follows that 

(4.12) - 1 " AB(l - xy) = 8(xy) +--
1 

L.J(ABx,x)x(-xy). 
q-

x 

When (4.12) is substituted into the left hand side of (4.11) and the x and 
y sums are evaluated we have 

(4.13) ___!_1 Ll(A, Ix)J(B , Mx)J(ABx , x)x(-1) 
q- x 

= J(AM, I)J(BL, M) - J( A, B). 

In terms of binomial coefficients, 

This is an analogue for the binomial coefficient version of Saalschutz's 
theorem [6, (1)] 

(4.15) L c ~ k )( m ~ k )(a+ % - k) = (a ~ m )( b,;; '). 
k ~ O 

If we take 

J(x, y) = e(l - x)e(l - y)L(x)M(y)N(x - y)N(l - xy), 
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then Theorem 4.9 gives 

(4.16) C.T. (e(l - x)e(l - y)L(x)M(y)N(x - y)N(l - xy)) 

= C.T. (I(x)M(l - x)M(y)L(l - y)N(x - y)e(l - x - y)). 
Using e(a) = 1 - 8(a) and converting (4.16) to a sum we obtain 

(4.17) L I(x)M(l - x)M(y)L(l - y)N(x - y) -(q - l)8(N) 
x,y 

= L I(x )M(y )N(x - y )N(l - xy) 
x,y 

-(q- l)8(M)-(q- l)N(-l)8(L). 
Writing N(x - y) = N(x)N(l - y/x) and applying (4.1) to N(l - y/x) 
and N(l - xy ), the summation on the right hand side becomes 

1 
2 

I: 1(N,x_)1(R, o)INxJJ(x)MxO(y) . 
( q - 1) x,y.xJJ 

The x and y sums are 0 unless LNxO = e and MxO = e, so we must have 
02 = LMN and x =MO. Note 02 

= (cp0) 2
• We have 

(4.18) L I(x)M(l - x)M(y)L(l - y)N(x - y) 
x,y 

= (q - l)8(N) -(q - 1)8(M) -(q - l)N(-l)8(L) 

{

O, if LMN is not a square, 

+ J(N, MR)J(N, R) + l(N,cpMR)l(N, cpR~ 

if LMN = R2
• 

Similar results to (4.18) can be found in [2, (5)] and [8, 4.37]. If we use 
(4.1) in the left hand side of (4.18), appeal to properties (1.10) and (1.11) 
for Jacobi sums and convert Jacobi sums to binomial coefficients, we have 

(4.19) q ~ 1 ~(~)(~x)(L~x)x(-1) 
= q - l LM ( - 1) 8 ( N) - q - l LN ( - 1) 8 ( M) 

q2 q2 

- q- l M(-l)8(L) 
q2 

+ (:R;~~~:; i(o~ ;:::R( -1)( ~~R )~~~R) • 
if LMN = R2

• 



., 

.. 
; 

' 
. 

' 

, 

LAGRANGE INVERSION 323 

This is an analogue for the binomial coefficient version of Dixon's 
theorem [6, (2)] 

(4.20) L (Z)C-: + k)C _ ~ + k)(-l) k 
k ~ O 

J 0, if I+ m - n is odd, 

= \ (-l)m - r( n ~')(I~ r ), if I+ m - n = 2r. 

Finally, if we take 

/(x , y) = e(l - x)e(l - y)L(x)M( y )N(l - xy ) 

x N(x - ay -(l - a)xy ), 
then 

1(-x _y ) 
l-y'l- x 

= e(l - x - y)L(x)M(l - x)M(y)L (l - y )N(x - ay) . 
If we take a * 0, then with calculations similar to the previous example, 

and 

C.T. 1( 1 ~ y' 1 ~ x) 

= L(-l)3 Ll(N, x)J(M, LNX.)l(L, LMx)x(a) 
(q-1) x 

q 
2 

8(1 + a) - ~e(l + a)8(N) 
(q-1) q -

l 1 
+ 2N(-a)+ 2' 

(q - 1) (q - 1) 

C.T.f(x,y) = Ll(LMNx2, x.)1(N,LMx)l(N,LNx)x( a 2) 
x (1 - a) 

{

O, if LMN is not a square 

+c2 J(N,R)J(N,MR) +J(N, cpR)l(N, cp~R) , 

if LMN = R2 

__ l_S(M) _ N(-a) S(L) + 1 + N(-a) 
q-l q-l (q-1)2 (q-1)2 

+ l 
2 
LMN( 

1 
-a )1(M, N) 

(q-1) -a 

'· 

. 
< 
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where 

N(-1) -
c1 = 

3 
LMN(l - a), 

(q - 1) 

and 
L(-1) 

c2 = 
2

8(1 - a). 
(q - 1) 

By Theorem 4.9, after converting Jacobi sums to binomial coefficients, 

(4.21) q ~ 1 ~(~)(L%x)(L~x)x(-a) 
= E1 + E2 + LN( - l)LMN(l - a) _!J___l 

q-

where E 1 and E2 are the "error" terms 
q - 1 

E 1 = -
2
-LM(-l)e(l + a)8(N) 

q 

q-l q-l 
- -LN(-l)8(M) - -M(-l)N(a)8(L) 

q2 q2 

+ LMN(-l) 8(1 +a)+ ~LMN(-1 a )1(M, N) 
q q - a 

and 

f 0, if LMN is not a square 

E, ~ 8(1 - a)l MR(-1)( ~)(~) + ~MR(-1)( :z:11~~~l· 

When a = 1, this reduces to (4.15). For general a, (4.17) is an analogue 
for the following version of Whipple's 3F2-quadratic transformation [6, 
(11)] 

(4.22) L ( ~)C _ ~ + k)C - ~ - k)( -a) k 
k ~O 

= (1 - a)m + n- 1 

(l +j)! ( - a )J 
X J :S (m E - 1)/ 2 j!(l- n + J)!(l - n + J)!(m + n - I - 2j)! (1 - a) 2 . 
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The identities (4.14), (4.19) and (4.21) indicate that there is an 
analogue for hypergeometric series over finite fields. In fact, [8] describes 
such an analogue in which these results are proved, by different methods, 
as hypergeometric series identities. 
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