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Abstract. Given two noncommuting matrices, A and B, it is well known

that AB and BA have the same trace. This extends to cyclic permutations of

products of A’s and B’s. Thus if A and B are fixed matrices, then products
of two A’s and four B’s can have 3 possible traces. For 2 × 2 matrices A and

B we show that there are restrictions on the relative sizes of these traces. For

example, if M1 = AB2AB2, M2 = ABAB3 and M3 = A2B4 then it is never
the case that Tr(M2) > Tr(M3) > Tr(M1), but the other five orderings of the

traces can occur. By utilizing the connection between Lucas sequences and

powers a 2 × 2 matrix, a formula is given for the number of orderings of the
traces that can occur in products of two A’s and n B’s.

1. Introduction and main results

Given two square matrices A and B, it well known [7, 8] that

(1.1) Tr(AB) = Tr(BA),

where Tr(A) is the trace of the matrix. Consequently, for cyclic permutations [8,
p. 110]:

(1.2) Tr(A1A2 · · ·An) = Tr(AnA1A2 · · ·An−1).

Given a matrix written as the product of a collection of matrices, define the neck-
lace of that matrix to be the set of all products of cyclic permutations of the collec-
tion. Thus the necklace of ABC is {ABC,CAB,BCA}, the necklace of ABAB is
{ABAB,BABA}, and the necklace of A2B2 is {A2B2, BA2B,B2A2, AB2A}. By
(1.2), all products in a necklace have the same trace.

One might ask how traces of different necklaces compare. The author finds it
somewhat surprising that in general, the trace of ABAB tends to be larger than
the trace of A2B2. To be more rigorous, if A and B are square matrices with
independent random variables as entries, then the following table from [4] gives
results on how often Tr(ABAB) > Tr(A2B2) in a simulation with 1,000,000 trials.

The first row in this table suggests that for 2 × 2 matrices with independent
random normal variables, Tr(ABAB) > Tr(A2B2) with probability 1√

2
. This was

proved in [4]. The exact probability for larger matrices is unknown.

Some of the results in [4] apply to other necklaces. If A and B are 2 × 2 ma-
trices, then Tr(AB2AB2) > Tr(A2B4) with probability 1√

2
as well. However,

with two A’s and four B’s, there are three necklaces to consider, denoted by
AB2AB2, ABAB3 and A2B4. In simulations, whereas Tr(AB2AB2) > Tr(A2B4)
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n normal variables uniform variables
2 707,456 720,660
3 703,004 703,320
4 701,885 700,959
5 702,375 700,259
10 706,124 704,561
20 709,715 710,189
50 714,473 714,627
100 716,805 717,009

Table 1.1

in 707,607 of 1,000,000 trials (as expected if the probability is 1√
2
), Tr(AB2AB2) >

Tr(ABAB3) in 641,846 trials and Tr(ABAB3) > Tr(A2B4) in 583,781 trials. Pre-
sumably the exact probabilities could be calculated as in [4] provided the proper
8-fold integrals could be evaluated.

One could also ask about the six possible total orderings of the traces of these
necklaces. Again using independent random normal variables as entries for A and
B, in 1,000,000 trials, the following table emerged. Letting M1 = AB2AB2, M2 =
ABAB3 and M3 = A2B4,

Trace combination Number of cases
Tr(M1) > Tr(M2) > Tr(M3) 300,092
Tr(M1) > Tr(M3) > Tr(M2) 123,546
Tr(M2) > Tr(M1) > Tr(M3) 282,568
Tr(M2) > Tr(M3) > Tr(M1) 0
Tr(M3) > Tr(M1) > Tr(M2) 218,484
Tr(M3) > Tr(M2) > Tr(M1) 75,310

Table 1.2

Of interest to us here is that the order Tr(M2) > Tr(M3) > Tr(M1) did not
occur in the 1,000,000 trials. Exploring further, it was discovered that this is
common. In fact, as the number of B’s grows, a smaller and smaller portion of
orders occurred in simulations. The following is a table from [12].

Our main theorem is the following.

Theorem 1.1. Consider products of two A’s and n B’s, where A and B are 2× 2
matrices and n ≥ 2. If φ is Euler’s totient function, then among those matrices for
which no two necklaces have the same trace there are

(1.3) 4 +
1

2

n−1∑
k=3

φ(k)

possible arrangements for the orders of the traces when n is even and

(1.4) 2 +

n−1∑
k=3

φ(k)
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# of B’s necklaces possible orders orders occurring
2 2 2 2
3 2 2 2
4 3 6 5
5 3 6 6
6 4 24 8
7 4 24 12
8 5 120 12
9 5 120 22
10 6 720 17
11 6 720 32

Table 1.3

possible arrangements when n is odd.

For example, when n = 10 the number of allowable orders is 4 + 1
2 (2 + 2 + 4 +

2 + 6 + 4 + 6) = 17. Now

(1.5)

n∑
k=1

φ(k) =
3n2

π2
+O(n ln n),

an estimate from [6, Theorem 330], and the number of necklace orderings is the
factorial of

⌈
n+1
2

⌉
. Thus, the frequency of possible orders rapidly goes to 0 as n

increases. Two distinct necklaces have the same trace with probability 0 if their
entries are selected independently at random from a normal distribution. One can
easily construct A and B for which different necklaces have the same trace, even
when A and B do not commute. For example, if

A =

(
1 −1
1 1

)
, B =

(
1 −1
1 0

)
,

then Tr(AB2AB2) > Tr(ABAB3) = Tr(A2B4). In this paper, we are only inter-
ested in strict inequalities so in what follows, we restrict ourselves to distinct traces.

As usual [10, pp. 41-61], [11, pp. 107-108], Lucas sequences Un = Un(P,Q) may
be defined by the recurrence U0 = 0, U1 = 1, Un = PUn−1 − QUn−2, for n ≥ 2.
Lucas sequences naturally enter into this study as follows. Let B be a 2× 2 matrix
with trace P and determinant Q. Then by the 2×2 version of the Cayley-Hamilton
theorem,

B2 = PB −QI.

An easy induction gives

(1.6) Bn = UnB −QUn−1I.

In the next section, we relate traces of necklaces to Lucas sequences. In Section
3, we prove the theorem. We give some concluding remarks in section 4.
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2. Lucas sequences and necklace traces

In this section, A and B will always denote 2 × 2 matrices. Moreover, we let
P = Tr(B) and Q = det(B), and define the Lucas sequence {Un(P,Q)} as in the
previous section. The main result of this section is the following.

Theorem 2.1. Let A and B are 2× 2 matrices and let T = Tr (ABAB −A2B2).
If n ≥ m ≥ k then

(2.1) Tr (ABmABn)− Tr (ABm−kABn+k) = Qm−kUk Un−m+k T.

This theorem allows us to convert a question about trace orders to the positivity
of a collection of products on the right hand side of equation (2.1).

Proof. We prove (2.1) via a number of applications of formula (1.6). We have

ABmABn −ABm−kABn+k = (ABmABm−k −ABm−kABm)Bn−m+k

= Un−m+k(ABmABm+1−k −ABm−kABm+1)

−QUn−m+k−1(ABmABm−k −ABm−kABm).

Since Tr(ABmABm−k) = Tr(ABm−kABm) we have

Tr(ABmABn −ABm−kABn+k) = Un−m+kTr(ABmABm+1−k −ABm−kABm+1).

We now use Bk = UkB −QUk−1I to obtain

ABmABm+1−k −ABm−kABm+1 = ABm−kBkABm+1−k −ABm−kABm+1−kBk

= Uk(ABm+1−kABm+1−k −ABm−kABm+2−k).

Letting m− k = j, we are left to evaluate

ABj+1ABj+1 −ABjABj+2.

We have

ABj+1ABj+1 −ABjABj+2 = PABjABj+1 −QABj−1ABj+1

− PABjABj+1 +QABjABj

= Q(ABjABj −ABj−1ABj+1).

A simple induction now gives

ABj+1ABj+1 −ABjABj+2 = Qj(ABAB −A2B2),

and the proof follows. �

If we put the products in a necklace in lexicographic order, then the first element
of the necklace will have the form ABmABn with m ≤ n. We will use such matrices
to represent their necklace in what follows. A natural way to order necklaces
is by how far the A’s are apart in the product (viewed cyclically). With this
ordering, if there are a total of 2n B’s then there are n + 1 necklaces, denoted by
ABnABn, ABn−1ABn+1, . . . , A2B2n. We introduce a numbering scheme where we
associate k with the necklace ABn−k+1ABn+k−1. When the number of B’s is odd,
say 2n+ 1 we use a similar scheme, but with 1↔ ABnABn+1, and more generally,
k ↔ ABn−k+1ABn+k. We write jk to denote that necklace j has a larger trace
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than necklace k and we let a permutation π = π1π2 . . . πn refer to the property that
necklaces π1, . . . , πn have their traces in decreasing order. For example, if there are
six B’s then the permutation 3412 would be used to represent the statement that

Tr(ABAB5) > Tr(A2B6) > Tr(AB3AB3) > Tr(AB2AB4).

Given a collection of two A’s and n B’s, let l = bn2 c. If i < j then i j corresponds
to the statement

Tr(ABl−i+1ABl+i−1) > Tr(ABl−j+1ABl+j−1)

when n is even and

Tr(ABl−i+1ABl+i) > Tr(ABl−j+1ABl+j)

when n is odd. Consequently, we have the following corollaries to Theorem 2.1.

Corollary 2.2.

(2.2) i j ←→

{
Ql−j+1Uj−i Ui+j−2 T > 0 when n is even,

Ql−j+1Uj−i Ui+j−1 T > 0 when n is odd.

Proof. This is a direct application of Theorem 2.1. �

Note that i j when i > j corresponds to the appropriate expression being negative
rather than positive.

Corollary 2.3. If n is even and Q and T are both positive, then the necklace
containing ABlABl has the largest trace.

Proof. Since ABlABl corresponds to 1 in our notation, if this necklace is not largest,
then there must be a pair of the form k 1. This translates to

k 1←→ Ql−k+1U2
k−1 T < 0,

implying either T < 0 or l − k + 1 is odd and Q < 0. �

We introduce one final piece of terminology. For a permutation π, let (i j) be 1
if i is to the left of j in π and -1 if it is to the right. For i < j,

(2.3) (i j) =

{
sgn(Ql−j+1Uj−i Ui+j−2 T ) when n is even,

sgn(Ql−j+1Uj−i Ui+j−1 T ) when n is odd,

where sgn(x) denotes the sign of x. We note that (i j) = −(j i).

We make use of the following properties of Lucas sequences.

Lemma 2.4. Viewing Un(P,Q) as a polynomial in P and Q we have the following.

(a) As a polynomial in P, Un has degree n− 1. If n is even, then Un is an odd
polynomial in P, if n is odd, then it is an even polynomial in P.

(b) As a polynomial in Q, Un has degree

⌊
n− 1

2

⌋
. Also, Un has exactly

⌊
n+ 1

2

⌋
terms, one for each allowable power of Q and the coefficient of Qk has the
form Pn−1−2k(−1)kck for some integer ck > 0.

(c) If P 2 ≥ 4Q then Un > 0 if n is odd and 1
P Un > 0 if n is even.
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Proof. The proofs of (a) and (b) are easy inductions. Part (c) follows from the
representation [10, p. 44]

Un(P,Q) =
1

2n−1

b(n−1)/2c∑
k=0

(
n

2k + 1

)
Pn−2k−1(P 2 − 4Q)k.

�

Finally for this section, we mention the following result.

Lemma 2.5. If A and B are 2 × 2 matrices and Tr(ABAB) < Tr(A2B2) then
P 2 ≥ 4Q, where P is the trace of B and Q is the determinant of B.

Proof. In Lemma 3.6 of [4] it is shown that Tr(ABAB) > Tr(A2B2) when either
A or B has complex eigenvalues. Thus, in order for Tr(ABAB) < Tr(A2B2), B
must have real eigenvalues, call them λ1 and λ2. Now P = λ1 + λ2 and Q = λ1λ2,
so P 2 − 4Q = (λ1 − λ2)2 ≥ 0. �

3. A proof of theorem 1.1

The Q-parameter in Un(P,Q) may be scaled away by multiplying B by 1√
|Q|
.

This will have no effect on the orders of the traces of the necklaces. Thus, we need
only consider two types of Lucas sequences: Un(x, 1) and Un(x,−1). The second
of these are usually referred to as Fibonacci polynomials, the first are a scaled
version of Chebyshev polynomials of the second kind, with the actual Chebyshev
polynomials being Un+1(2x, 1). We require the following facts about Un(x, 1).

Lemma 3.1. The zeros of Un(x, 1) have the form x = 2 cos kπn where 1 ≤ k ≤ n−1.

In particular, for all n ≥ 3, Un(x, 1) has exactly bn−12 c simple positive zeros and
the zeros of Un(x, 1) and Un+1(x, 1) separate each other. That is, between each pair
of successive positive zeros of one polynomial there is exactly one zero of the other.

Proof. That the zeros are simple and separate each other follows from the fact that
{Un(2x, 1)} is a set of orthogonal polynomials. See [1, Theorem 5.4.1, Theorem
5.4.2], for example. In fact, a standard representation for Chebyshev polynomials
[1, p 101] is Un(2 cos θ, 1) = sinnθ

sin θ , giving the formula for the zeros. Since Un has
degree n− 1 and is even or odd depending on whether n is odd or even, the count
for the number of positive zeros follows. �

In proving Theorem 1.1 we show that the expressions in (1.3) and (1.4) give
upper bounds for the numbers of possible trace orders, and that these bounds
are achieved. For the upper bound we use Corollary 2.2 and Lemma 2.4 to give
information on permutations of necklace trace orders. We need information on
the sign of Qm−kUkUn−m+kT. We break up the investigation into three cases:
Q < 0, Q > 0 but T < 0, and both Q > 0, T > 0. We investigate these cases
in order.

Lemma 3.2. If Q < 0 then there are exactly two possible permutations of trace
orders.

Proof. If Q < 0 then P 2 > 4Q so by Lemma 2.4, Un > 0 for odd n and 1
P Un is pos-

itive for even n. By Corollary 2.2, if i < j then (i j) = sgn((−1)n−j+iTUj−iUj+i−k)
where k = 1 if there are an odd number of B’s and k = 2 otherwise. This means
that
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(i j) =

{
sgn((−1)l−j+1 T ) when n is even,

sgn((−1)l−j+1 TP ) when n is odd.

For any given B, the sign of T and the sign of PT are fixed. That is, the rele-
vant sign is the same for every permutation. Consequently, there are two possible
permutations corresponding to whether T (or PT ) is positive or negative. �

We can state explicitly what these permutations are. Since l− j+1 does not de-
pend on i, but only on the parity of j, once we know (1 2), we know the permutation.
If (1 2) = 1 then all even numbers follow all odd numbers. Also, (i i+ 2j) will be 1
if i is even, -1 if i is odd. This means that π starts with the largest odd number and
descends through the odds to 1, followed by the even numbers in increasing order.
If n = 9, for example, then there are five necklaces and this permutation would be
5 3 1 2 4. On the other hand, if (1 2) = −1, we have the reverse of this permutation,
4 2 1 3 5. These two permutations must occur since they will be produced by the
matrices

A1 =

(
1 1
1 1

)
, A2 =

(
1 −1
1 1

)
, B =

(
2 0
0 −1

)
.

To see this, we note that

Tr(A1BA1B −A2
1B

2) = −9,

Tr(A2BA2B −A2
2B

2) = 9.

In these examples, P = 1, Q = −2 < 0. Since T = Tr(ABAB − A2B2), by the
proof of the theorem, (1 2) = sgn((−1)n−1T ), and both sign patterns will occur.
One thing is left to establish: that all necklaces have different traces. For this, by
Theorem 2.1, two traces can only be the same when Qm−kUkUn−m+kT = 0. In this
case, Un = Un−1 + 2Un−2 implies that no Uk is zero if k > 0.

Lemma 3.3. If Q > 0 but T < 0 then there is one possible permutation when there
are an even number of B’s, and two permutations if the number of B’s is odd.

Proof. By Lemma 2.5, we again have P 2 > 4Q, but now we know the sign of T.
Thus, for i < j we have

(i j) =

{
−sgn(Ql−j+1) = −1 when n is even,

−sgn(Ql−j+1 P ) = −sgn(P ) when n is odd.

If there are m necklaces, then when n is even, the permutation must be π =
m (m−1) · · · 2 1. When n is odd, there are two possible permutations, one for each
sign of P. The first is the same as the above, the other is π = 1 2 · · · (m−1)m. �

Again, these cases are realized in the examples

A =

(
1 1
1 1

)
, B1 =

(
2 0
0 1

)
, B2 =

(
−2 0
0 −1

)
.

This leaves us with the following case.

Theorem 3.4. Consider the set

S = {a > 0 | Uk(a, 1) = 0 for some 3 ≤ k ≤ 2n− 1},
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the set of distinct positive zeros of U3, . . . , Un−1, and suppose S has size m. The
number of permutations of trace orders in the case where Q > 0 and T > 0 is{

1 +m, when N is even,

2(1 +m), when N is odd.

Proof. Since Q > 0 and T > 0, when i < j,

(3.1) (i j) =

{
sgn(Uj−iUi+j−2), when n is even,

sgn(Uj−iUi+j−1), when n is odd.

Since Q > 0 we may scale away Q and only consider the polynomials Uk(x, 1).
We focus on (i i + 1) and (i i + 2). When N is even, these have the form
sgn(U1(x, 1)U2i−1(x, 1)) = sgn(U2i−1), and sgn(U2(x, 1)U2i(x, 1)) = sgn(xU2i), re-
spectively. When N is odd, the important quantities are sgn(U2i) and sgn(xU2i+1).
Given an x /∈ S, the conditions of (3.1) will determine a permutation, call it π(x).

Suppose we order the set of positive zeros 0 < x1 < x2 < · · · < xm. These zeros
partition the half line (0,∞) into m + 1 regions. If x and y belong to the same
region, say xi < x, y < xi+1, then π(x) = π(y) since signs of Uk(x, 1) and Uk(y, 1)
will match for all k. Thus, there can be no more than m+1 permutations associated
with the regions between the elements of S. When N is even, all the products of the
U ’s will be even polynomials, leaving us with at most these m + 1 permutations.
When n is odd, the products of the U ’s will be odd polynomials. Thus π(−x) will
be the reverse of π(x), doubling the possible number of permutations. If

A =

(
1 −1
1 1

)
, B =

(
x −1
1 0

)
,

then P = x, Q = 1 > 0, T = x2 > 0 so for every region between the zeros of the
Uk there is a matrix B with an x-value in that region, along with its associated
permutation.

Finally, we must show that all resulting permutations are distinct. To that end,
suppose that a and b are real numbers with xi < a < xi+1 < . . . < xi+j < b <
xi+j+1, with the obvious interpretation if xi+1 = x1 or xi+j+1 = xm. That is, sup-
pose a and b are separated by a positive number, j, of zeros of the Uk. Then there
is a smallest k for which a and b are separated by a single zero of some Uk. To see
this, let k be minimal with the property that there is a zero of Uk separating a
and b. If there were more than two zeros between a and b, then by the interlacing
property, Uk−1 would also have a zero between a and b, a contradiction.

Now given a and b from different regions of the half line, let k be an index
for which a and b are separated by a single zero of Uk. Then sgn(Uk(a, 1)) =
−sgn(Uk(b, 1)). This means that depending on the parity of k, there will be an i with
either (i i+1) or (i i+2) differing from π(a) to π(b). Consequently, π(a) 6= π(b). In
the case where N is odd, we must also show that for positive a and b, π(a) 6= π(−b).
Since (1 2) = sgn(x), when x is positive, 1 will be to the left of 2 but for negative
x, 1 is to the right of 2 so these permutations are all distinct. �

A consequence of Theorem 3.4 is that when n is even, there are m+ 4 orders for
the permutations of necklace traces. This is because the three permutations arising
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from the cases where Q < 0 and Q > 0, T < 0 do not begin with 1, making them
distinct from the m + 1 permutations of Theorem 3.4. When n is odd, however,
the four permutations associated with Q < 0 and Q > 0, T < 0 also occur among
the permutations of Theorem 3.4. In fact, if x1 is the smallest element of S, and
0 < x < x1 then π(x) and π(−x) are the permutations that arise in Lemma 3.2.
This is because an easy calculation shows (i j) = (−1)j , which does not depend on
i, and the discussion following Lemma 3.2 applies to this case.

Similarly, when n is odd, the two permutations from Lemma 3.3 are π(x) and
π(−x) where x > xm, the largest of the zeros in S. In this case, Uk(x, 1) > 0 for all
k, so π(x) is the identity permutation and π(−x) is its reverse, as in Lemma 3.3.
Consequently, when n is odd, the only permutations we have are those arising from
Theorem 3.4. Consequently, we have a count on the number of permutations. It is{

4 +m, when n is even,

2 + 2m, when n is odd.

The proof of Theorem 1.1 follows from the observation that for S as in Theorem

3.4, |S| = 1

2

n−1∑
k=3

φ(k). This, in turn, follows from the fact that

S =

{
2 cos

kπ

m
| 1 ≤ k ≤ 1

2
(m− 1), 3 ≤ m ≤ n− 1

}
.

That is, given that S contains the zeros for Uk(x, 1), with 3 ≤ k < m, the contribu-

tion of the zeros of Um to S will consist of those numbers 2 cos jπm , with j prime to

m. There are 1
2φ(m) of these, by periodicity and the fact that we seek only positive

zeros. This concludes the proof of Theorem 1.1.

4. comments

Products of A’s and B’s with at least three A’s and three B’s are more compli-
cated. There are two issues. First, for products of 2× 2 matrices A and B, there is
another trace symmetry in addition to cyclic permutations: If a product is written
in reverse order, it has the same trace, as proved in [?] or [4]. That is,

Tr(AABBAB) = Tr(BABBAA)

for all 2 × 2 matrices A and B. If a product consists of just two A’s, then the
reverse of a product is in the same necklace, but for larger numbers of A’s, as in
the example, this need not be the case. This makes ordering the necklaces more
challenging.

A second issue is that with at least three A’s and three B’s, the matrices interact
more than just through the trace of ABAB −A2B2. For example,

Tr(ABABAB −A2BAB2) = Tr(AB)Tr(ABAB −A2B2).

We do not have an analog for Theorem 2.1 when there are more than two A’s.
However, we at least have the following weak version.
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Theorem 4.1. Suppose that M1 and M2 are each products of m A’s and n B’s
where A and B are 2× 2 matrices. Then

Tr(M1 −M2) = cTr(ABAB −A2B2),

where c is a polynomial in the entries of A and B.

Proof. We may induct on m + n, the number of matrices in the two products. If
m + n ≤ 4, the trace is zero when m is 0, 1, 3 or 4, and for m = 2, the result is
true by Theorem 2.1. For larger m+n, we first note that by cyclic permutation we
may write

M1 = Aa1Bb1Aa2Bb2 · · ·AajBbj ,
M2 = Ac1Bd1Ac2Bd2 · · ·AckBdk ,

where each of the exponents is a positive integer, a1 + · · ·+ aj = m = c1 + · · ·+ ck,
and b1 + · · ·+ bj = n = d1 + · · ·+ dk. Moreover, we may take a1 to be the largest
of the a’s and c1 to be the largest of the c’s. If a1 ≥ 2 and c1 ≥ 2 we may use
A2 = Tr(A)A − det(A)I and induct. Similarly, if one of the b’s and one of the d’s
is at least 2 we may induct. If no A has an exponent larger than 1 then j = k, and
the only way to prevent some exponent of B to be at least 2 is to have M1 = M2.
Thus we may assume that, say c1, is at least 2, and a1 = a2 = · · · = aj = 1. In
this case, j = m ≤ n and k < m. Consequently, the largest b and largest d will
both be at least 2 unless m = n and M1 = (AB)m. Since m + n > 4, m ≥ 3. Let
M3 = A(AB)m−1B = A2(BA)m−2B2 and consider

Tr(M1 −M2) = Tr(M1 −M3) + Tr(M3 −M2).

By the previous discussion, Tr(M3−M2) = c1Tr(ABAB−A2B2) since each matrix
contains A2. Since m−1 ≥ 2 we may use (AB)2 = Tr(AB)AB−det(AB)I to write

Tr(M1 −M3) = Tr(AB)((AB)m−1 −A(AB)m−2B)

− det(AB)((AB)m−2 −A(AB)m−3B),

and the inductive hypothesis gives Tr(M1 − M3) = c2Tr(ABAB − A2B2), from
which the proof follows. �

We note that the polynomial c in this proof can be thought of as a polynomial
in the five variables Tr(A), Tr(B), Tr(AB), det(A), det(B), rather than the eight
entries of A and B.

We only briefly investigated cases with a higher number of A’s. When there are
three A’s or four A’s we obtained the following table.

# of A’s # of B’s necklaces orders occurring
3 3 3 6
3 4 4 24
3 5 5 52
3 6 7 175
3 8 8 246
4 4 8 616
4 5 10 ?

Table 4.1
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We have not verified that the entries in the fourth column are the true numbers
of possible orders. However, it is not too difficult to show that certain orders
do not occur. For example, when there are three A’s and five B’s, if one labels
the necklaces via 1 ↔ ABAB2AB2, 2 ↔ ABABAB3, 3 ↔ A2B2AB3, 4 ↔
A2BAB4, 5 ↔ A3B5, then we may construct a table of polynomials as in the
previous section and use this to show that the trace order 1 2 4 3 5 does not occur.
If we let a = Tr(A), b = Tr(AB), c = Tr(B), d = det(B), e = Tr(ABAB−A2B2),
then
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