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 In most undergraduate level books on abstract algebra, it is shown that every
 Euclidean domain (ED) is a principal ideal domain (PID) and every principal ideal
 domain is a unique factorization domain (UFD). We thus have a set of implica-

 tions: ED PID UFD. Most (but not allt) books mention that neither con-

 verse is true. But while it is very easy to show that Z[x] is an example of a UFD
 that is not a PID, an example of a PID that is not a ED is harder to come by. In
 [2], Campoli gives an easy proof that Z[;] has the desired properties, where
 ; = ( -1 + J - 19 )/2, by showing that, in his words, Z[; ] is "almost Euclidean."
 In this note, we show that Campoli's "almost Euclidean" condition is, in fact,
 equivalent to the PID condition.

 Defilnition. An integral domain D is said to be almost Euclidean if there is a
 function d: D > Z+U{0} (called an almost Euclidean function) such that

 1) d(0) = 0, d(a) > 0 if a + 0,

 2) If b + 0, then d(ab) 2 d(a) for all a E D,
 3) for any a, b E D, if b + 0 then either

 i) a = bq for some q E D or
 ii) O < d(ax + by) < d(b) for some x, y E D.

 Our functions d in this paper will satisiFy the stronger condition (2') that for all a, b
 in D, d(ab) = d(a)d(b), from which (2) follows trivially.

 Our main result is the following:

 Theorem 1. An integral domain D is a principal ideal domain if and only if it is
 almost Euclidean.

 Proof: Campoli [2] proved that if a ring is almost Euclidean, it is a PID. For
 completeness, we repeat the proof here. Let D be almost Euclidean, and let I be
 a nonzero ideal in D. Among the elements x E I, let b be an element with a
 minimal positive value for d(x). Given a E I, for any x, y E D, ax + by is in I. By
 definition of ^, it cannot be that 0 < d(ax + by) < d(b), so the second condition,
 a = bq must hold for some q E D. Thus, I = (b).
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 Now suppose that D is a PID. Then D is a UFD, so we may define the function
 d as follows: Let d(O) = O, and for any a + O, if a = £plp2 *+ PnS where £ iS a
 unit and P1, . . . ,Pn are irreducibles, let d(a) = 2n. Since d(ab) = d(a)d(b), it is
 clear that d satisfies (1) and (2) of the definition. So let a, b E D, with b + O. Let
 I={ax+bylx,yeD}. Since I is an ideal in D,I= (r> for some rsD with
 r + O. If a = bq for some q E D, then I = (b>. Otherwise, I + (b>. Since

 b E I, b = xr for some x E D, so d(b) 2 d(r). Since I + (b>, x is not a unit.
 Thus, d(x) > 1, so d(r) < d(b). If r = xOa + yOb, then we have 0 < d(r) < d(b),
 and condition (3) is satisfied by d. <

 Examples of Euclidean domains in abstract algebra texts are almost always of

 the form D = F[x], where F is a field or the ring of integers in Q[4] for various
 small integer values of d. In the latter case, these books introduce the norm of an
 element of this ring and use its absolute value as a Euclidean function. In general,
 if F is an algebraic number field (a finite extension of Q), then F can be viewed as
 a finite dimensional vector space over Q. If a E F, then the map Ta(x) = ax is
 obviously a Q-linear transformation from F to F. The norm of a, N(a), is defined
 to be the determinant of this transformation. The norm has the following proper-
 ties:

 1) N(ab) = N(a)N(b) for all a, b E F,
 2) N(a) = 0 if and only if a = O,

 3) if a is an algebraic integer, then N(a) E Z,
 4) an algebraic integer a is a unit if and only if N(a) = _ 1,

 Properties (1) and (2) are elementary properties of determinants, property (3) is
 mentioned in [5, p. 175], and property (4) is an easy consequence of (1), (2), and

 (3).

 Theorem 2. If D is the set of integers in an algebraic number feld, and if D is a
 principal ideal domain, then the absolute value of the norm satisfies the conditions of
 an almost Euclidean fiwnction.

 Proof: The properties of the function d in Theorem 1 that were used in the proof
 were:

 1) d(ab) = d(a)d(b)

 2) if a E D, then d(a) = 1 if and only if a is a unit.

 Since the absolute value of the norm also has these properties, the proof follows as
 in Theorem 1. Thus, given a, b E D, with b + O, let I = {ax + bylx, y E D} = (r>.
 If a = bq for some q E D, then I = (b>. Otherwise, 0 < iN(r)l < IN(b)l, since
 b = xr for some nonunit x E D. E

 If D is the ring of integers in some finite extension F of Q, we may now check
 if D is a principal ideal domain by checking whether or not D is almost Euclidean

 with respect to the absolute value of the norm. Thus, number fields are quite
 special. Another example of this is the following: In a number field, D is a UFD if
 and only if D is a PID [6, page 146]. Campoli [2] used the fact that Z[ ;] with

 ; = (-1 + 2- 19)/2 is almost Euclidean to show that this ring is a PID. His

 techniques can be easily extended ts show that this remains true if -19 is replaced
 by - 43 or - 163. In fact, with a little work it is possible to prove the famous result
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 [1, p. 137]: The ring of integers in Q(A/1 - 4d ) where d > 0 is a PID if and only if
 the polynomial x2 + x + d is prime for all integers x with 0 < x < d - 2.

 One final comment: If D is an almost Euclidean subring of a number field,

 Theorem 2 tells us that we may use the absolute value of the norm as a near
 Euclidean function. Suppose that D is actually Euclidean. Will the absolute value

 of the norm serve as a Euclidean function? It is interesting to note that Hardy and

 Wright [4, p. 212] define a Euclidean domain not in the usual way but explicitly

 using the norm as the Euclidean function. However, the answer to the question is

 that the norm may not work. In fact, it was shown in [3] that Z[;], with; =

 (1 + )/2 is an example of a ring which is Euclidean, but not with respect to

 the absolute value of the norm.

 ACKNOVVLEDGMENTS. I would like to thank Joe Gallian and the reviewer for many helpful

 commentsS and thank the members of the usenet newsgroup sci.mathS especially Henry Cohn, for the

 reference to a ring that is Euclidean but not norm-Euclidean.
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 A Colorful Determinantal Identity,

 a Conjecture of Rota, and Latin Squares

 Shmuel Onn
 . . .

 1. Rota's Colorful Conjecture and the Latin Square Conjecture. The following

 conjecture in combinatorial linear algebra is due to Gian-Carlo Rota.

 Rota's Colorful Conjecture. Let 1W,...,nw be bases of an n-dimensional vector

 space. Then their multiset union can be repartitioned into bases 1U,...,nU such

 that llU n JWI = 1 for all i, j.

 Regarding the vectors in each iW as colored in color i, the newly sought bases

 are colorAl, namely contain one vector of each color. So Rota's Colorful (::onjec-

 ture is that any n colored bases of an n-dimensional vector space can be

 repartitioned into n colorful bases.

 A Latin square of order n is an n by n matrix L = (Lij) in which each row and
 each column is a permutation of {1, . . ., n}. More precisely, there are permutations

 C1 . . . (Jn and r1, . . ., Tn such that Lij - ai(i) = 7rj(i) for all i, j. The sign of the

 Latin square is defined as the product of all signs of its row and column
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