PHYS 5061 Homework 1
Due Wed. Feb. 13

1) The reciprocal of impedance is called admittance, often denoted by $\mathrm{Y}=1 / \mathrm{Z}$. Instead of thinking $V=I Z$ as the generalization of Ohm's law $V=I R$, the admittance is handy in expressing the current as being proportional to voltage. I = YV. Consider the two RLC circuits at right.
Assume they are eachdriven by a voltage $\mathrm{V}(\mathrm{t})=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}$. For (a) find the magnitude of the admittance $\mathrm{Y}(\omega)$ as a function of frequency and.

Sketch it qualitatively as a function of frequency. Where is the admittance a maximum and what is the maximum current that will flow? For circuit (b) find the magnitude of the impedance $Z(\omega)$. Sketch it. How does the current through this combination vary with frequency? At what frequency is it a minimum? What is the minimum current? What's the maximum current?
2) The op-amp circuit is connected to a time-dependent Vin(t). Applying the golden rules for op-amps show that the output voltage is proportional to the time integral of $\operatorname{Vin}(\mathrm{t}): \quad V_{\text {out }}(t)=-(1 / R C) \int V_{\text {in }}(t) d t$

3) Apply the golden rules for opamps to find an expression for Vout (t) in terms of $\operatorname{Vin}(t)$ for this circuit. Verify that for Vin(t) restricted to the range of -5 V to +5 V , the output will be between 0 and -5 V .

