
PHYS 5061 Lab 5
Signals and the Frequency Domain

Introduction

This lab makes use of A/D tools developed previously to sample signals and the Fast
Fourier Transform (FFT) to examine them in the frequency domain. You will explore the
role of sampling rates and the phenomenon of aliasing, the frequency content of standard
waveforms, and work in the frequency domain to process some recorded data to remove
interference and other random noise in order to recover the signal of interest.

Time-dependent signals can be regarded as the superposition of sinusoidal signals. A
general form for expressing this for a periodic signal with period T , that obeys v(t+ T ) =
v(t), is

v(t) =
∞∑

n=−∞
cne

inωot = c0 +
∞∑
n=1

(
cne

inωot + c−ne
−inωot

)
,

where the fundamental angular frequency ω0 = 2πf0 and f0 = 1/T . The coefficients cn
are called the Fourier coefficients and may be complex numbers. You should recall that
e±iθ = cos θ±i sin θ, so that this expression is made up of sinusoidal signals with frequencies
that are integer multiples of the fundamental and the multiples are often referred to as
harmonics. For a non-periodic waveform, the sum over discrete frequencies turns into a
sum over all frequencies and is expressed as an integral, with the weighting of each frequency
(its Fourier coefficient, now given as F (ω):

v(t) =
∫ ∞
−∞

F (ω)eiωtdω.

These relationships can be inverted to express the coefficients cn or F (ω) in terms of
the signal v(t):

cn ∝
∫ T

0
v(t)e−inω0tdt

or
F (ω) ∝

∫ ∞
−∞

v(t)e−iωtdt.

These last two equations are written as proportionalities since you will encounter various
ways of writing down the basic relationships, and these will include “normalization” factors
that vary by author. Such pairs of relationships (between v(t) and cn or v(t) and F (ω) are
known as Fourier transform pairs.

Discretely sampled signals as recorded by an A/D converter or a digital oscilloscope
limit the range of frequencies included in the sum or integral to calculate the Fourier co-
efficients. If the signal v(t) is measured with N samples taken at equally spaced times ∆t
apart, the corresponding sampling frequency fs = 1

∆t
. As you will see, this imposes a limit

on the frequencies reliably found through the Fourier transform to a maximum of fs/2.

1



This upper frequency limit is often called the Nyquist frequency. The rule of thumb is that
to digitize a signal of frequency f , you must sample it at a rate at least twice this rate –
amounting to at least 2 points per cycle. Naturally, recording many points per cycle of a
periodic wave gives a better reproduction of the signal, so this Nyquist frequency tells us
about the minimimum sampling rate needed to reliably detect a frequency component in
a signal.

The calculation of the Fourier coefficients of a digitized waveform is carried out effi-
ciently with the fast Fourier transform algorithm (FFT). Given N samples of v sampled
at a rate of fs, this algorithm calculates the Fourier coefficients cn for a series of equally
spaced frequencies. These frequencies are spaced by ∆f = fs/N and range over positive
and negative frequencies:
fn = −(N

2
−1)∆f, −(N

2
−2)∆f, . . .−2∆f,−∆f, 0, ∆f, 2∆f, . . . (N

2
−2)∆f, ( (N

2
−1)∆f, N

2
∆f .

The highest frequency corresponds to the Nyquist frequency, fs/2.

This calculation is available in LabVIEW functions under Signal processing - Transforms
as a VI, F(x). Given an input array of measured values of the signal v(t), this VI sends
out an array of the Fourier coefficients cn for the discrete set of frequencies allowed by the
number of samples and the sampling rate. To do the calculation efficiently, the FFT algo-
rithm requires that the number of samples, N , be an integer power of 2: N = 2m. While
the algorithm can accept input arrays of other lengths, it must then adapt the calculation
by truncating the data, padding it with additional zeros, or adapt a slower, less efficient
algorithm, all of which introduce their own quirks. Therefore throughout much of this lab
we will work with a number of samples N = 1024 = 210.

The inverse process, of taking the Fourier coefficients cn and producing v(t) is carried
out by the companion VI, F ′(x), the inverse FFT. Taking the Fourier transform of the
Fourier transform of v should produce the orignal v. However, because of the normaliza-
tion factors included in the Fourier transform pairs, the two VI’s are not interchangeable.
So be sure to use F(x) to take a signal in the “time domain” v(t) to find its frequency
spectrum and use F ′(x) to take the frequency domain representation cn’s (its frequency
spectrum) back to the time domain.

Chapter 12 of Essick explores the FFT. It lays out some of the details of calculating the
Fourier coefficients for a discretely sampled signal and pursues some more sophisticated
techniques (particularly using window functions) in using FFT’s to extract information
about the frequency and amplitude data about a waveform. You may find this a useful
reference in understanding the general application of the FFT, but we won’t dwell on
windowing techniques or follow the exercises of this chapter.

2



Experimenting with the Fast Fourier Transform

Building the spectrum analyzer

Revive your simple digital oscilloscope from chapter 6 in Essick or make use of the simple
one-shot digitizer, SingleDSO.vi, available in a folder of utility VI’s. In any case be sure
you have convenient controls for the number of samples collected and the sampling rate.
Throughout most of this work, the number of samples should be set to 1024, so you might
see if you can program the control to have this as its default value. You should display the
digitized signal in an X-Y Graph, plotting v(t). If adapting your own DSO VI, you may
need to (a) pry out just the digitized voltage data from the output of DAQ Assistant VI
you used, and (b) construct an array of time values for the sampled data and bundle these
together to feed to the X-Y graph VI. Please save your modifications to your old VI’s (or
to the utility VI’s provided) as new and separate VI’s in your own folder.

Add to this digitizing VI the capability to compute (with the FFT.vi) and display (with
another X-Y graph) the FFT spectrum of coefficients as a function of frequency. Put this
2nd graph directly below the time domain graph of v(t). Since the Fourier coefficients are
complex, you can settle for displaying the magnitude of the cn. The math palette has tools
for manipulating complex numbers - look for the one that converts cartesian (x + iy) to
polar (reiθ) form, with handy outputs of magnitude (r) and angle.

If you read the help for the FFT.vi, you’ll discover the coefficients are ordered in a
non-intuitive way (at least to us non-experts). Recall that our FFT includes coefficients
for negative frequencies. The default order for the coefficients starts at f = 0, ∆f, 2∆f ,
running up to f = +fs/2 (the maximum) and then the frequencies run through negative
values−(N

2
−1)∆f to −∆f . There is another utility VI that generates an array of frequency

values based on the number of samples and the sampling frequency in the same order as
the FFT’s output array of coefficients, FFTfreqs.vi – also in the utility folder. You can use
this, but take the time to see how it works. (The ordering of array elements in the FFT
is another idiosyncratic feature of implementing the algorithm that may vary if you use
an FFT routine in another software package; always look carefully at the documentation.)
Bundling the frequencies array with the coefficients array from FFT.vi for the second X-Y
graph will take care of the weird ordering, since the X-Y graph will be based on the correct
pairs of (fn, cn) when plotted. Before bundling with frequencies for the 2nd X-Y Graph,
it may be worthwhile to divide the magnitude of the cn’s by N , the number of samples.
This turns out to produce something scaled correctly to correspond to the normal Fourier
coefficients cn in the original expressions above.

Note on the X-Y Graph: some plots here may be very cluttered with lots of points.
By right-clicking on the graph, you can choose to make the Graphics Palette visible be-
neath the graph. This provides tools to select and zoom in on smaller regions of the graph
to get a better look the details. You should enable this feature for both the graphs you have.

3



With the number of samples collected = 1024 and a sampling frequency of 1024 (sam-
ples/second), try recording a 20 Hz sine wave, 2 Vpp, from a function generator (a real one
on the bench, not one inside LabVIEW).
Double check what you’re getting from the function generator with your bench scope.
Make sure the digitized v(t) in your VI matches your expectations.
Look at the frequency spectrum in the FFT graph. It should show two nearly symmetric
spikes near ±20 Hz. If everything is in order, your VI is probably wired up right.

Next, record your observations in your lab note book as you try the following:
Doubling the amplitude of the function generator and observe the change in the frequency
spectrum;
Add a DC offset at the function generator and observe the FFT output.
Change the frequency of the function generator (changing nothing in your VI) and see that
the spikes move in the correct fashion.

Observation of aliasing

Systematically observe the FFT spectrum for 2.0 Vpp sine waves from the function gen-
erator (no DC offset) with frequencies of 50, 100, 200, 300, 400, 475, 500, 512, 525, 550,
600, 700, 800, 900, 1000, and 1020 Hz. Sketch neatly in your lab notebook the frequency
spectra observed in a way that makes comparison easy and shows the trends (stack them
with a common scales for the axes. What happens to the spectrum when the signal fre-
quency increases beyond the Nyquist frequency? Based on your measurements what is the
connection between the true frequency from the generator, the apparent frequency as found
by the output of the FFT routine, and the sampling frequency for frequencies greater than
fs/2?

Harmonic content of non-sinusoidal waveforms - square, triangle waves

Carefully examine the FFT spectrum for a 5 Hz square wave, 2.0 Vpp. Record which
frequencies are present, what multiples of the 5 Hz fundamental they are, and the mag-
nitudes of their Fourier coefficients. (dig to get three“significant” figures for the values of
the coefficients; don’t settle for a truncated fixed point value like .01, coax LabVIEW to
display some more digits.) Do the same for a triangle wave. Compare and contrast the
harmonic content of these two waveforms. Interpreting the cn’s further can be tricky, since
your graph is only the magnitude, and the real and imaginary parts determine sign/phase
information about how each harmonic contributes (or the signs of the corresponding an
and bn in the series expansion in terms of cosines and sines).

4



Harmonic content of non-sinusoidal waveforms - amplitude modulation

Examine the FFT spectrum of an amplitude modulated (AM) waveform using the bench-
top function generator or your previously built AM waveform generator (there is an AM
generator Vi in the utility folder, too). To use the bench-top generator set it to sine wave,
f = 500 Hz then select MOD = AM, Modulation frequency = 50 Hz, depth = 100%, shape
= Sine) to generate data for the FFT. Use a carrier or signal frequency of 500 Hz and a
modulation frequency of 50 Hz. Use a sampling frequency of 20000 per second and a large
number of samples 2n, e.g. n=14 or 15. (Be sure to use a power of 2.) What frequencies
do you expect to see, and what frequencies do you find? The AM waveform comes from

v(t) = Ao [1 +m sin(2πfmodt)] · sin(2πfsigt)

where m = 1 corresponds to a modulation depth of 100% on the function generator. A
trigonometric identity (sinA sinB = ...) can help in sorting out the frequency spectrum
that this formula implies.

Signal recovery and filtering in the frequency domain.

You are provided with a custom data file containing a signal buried in a lot of noise, both
60 Hz interference and random white noise. Your task is to use the FFT capabilities to
identify the probable frequency and amplitude of the true signal. You’ll need to read the
file into LabVIEW (there’s a read-from-spreadsheet-file VI that can read simple text files),
then break the data into separate time and signal voltage arrays, and determine the num-
ber of points and calculate the sampling frequency (do this in your code, so it can handle
different file lengths and sampling rates, and remember fs = 1/∆t, the time interval be-
tween measurements). Then build a digital filter in LabVIEW, i.e. adjust the Fourier
components of the signal to reduce irrelevant noise and interference (notch filters, band
pass filters, high pass or low pass are all possible by simply either leaving alone or setting
to zero, as appropriate, the various Fourier coefficients of the signal. Once filtered, use the
inverse FFT VI F ′(x) to convert the filtered Fourier coefficients back into the time domain
(= the filtered v(t)), and display the filtered signal on a 3rd X-Y graph. From this graph
estimate the frequency and amplitude (and maybe phase) of the buried signal assuming it
can be written as C cos(2πft− φ).

Save and print out the final polished spectrum analyzer / filter VI, showing the original
and filtered v(t)’s and the original’s FFT spectrum. Include both front panel and wiring
diagrams in your lab notebook.

5


