(1) Do problem 2.10 on p.56.

(2) Do Problem 2.18 on p.12 on p.59/60.

(3) Review of matrix algebra.

(a) Let
\[A = \begin{pmatrix} 1 & 4 & 1 \\ 3 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\]

Compute:
(a1) \(AA' \) (\(A' \) is the transpose of \(A \))
(a2) \(B'B \)
(a3) \(AB \)

(b) Consider the following system of linear equations:

\[
\begin{align*}
2x_1 + 3x_2 + 2x_3 &= -10 \\
-x_1 - 2x_2 + 3x_3 &= 4 \\
3x_1 + 4x_2 + 2x_3 &= -5
\end{align*}
\]

(b1) Write the system in matrix form: \(AX = b \)
(b2) Find \(A^{-1} \). (\(A^{-1} \) is the inverse of \(A \)). You may use SAS to do this.
(b3) Solve the system by the fact \(Ax = b \) (i.e. \(x = A^{-1} b \)). You may use SAS to do this.

(4) (you may use SAS to do b2,b3,b4) Consider the simple linear regression model:

\[Y_i = \beta_0 + \beta_1 x_i + \epsilon_i \text{ where } \epsilon_i \text{ are independent and Normal with mean 0 and variance } \sigma^2\]

(a) Write the model in matrix form \(Y = X \beta + \varepsilon \).

(b) Consider the following data from HW # 1, problem #6:

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>50</th>
<th>64</th>
<th>76</th>
<th>64</th>
<th>74</th>
<th>60</th>
<th>69</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_i)</td>
<td>128</td>
<td>159</td>
<td>158</td>
<td>119</td>
<td>133</td>
<td>112</td>
<td>96</td>
<td>118</td>
</tr>
</tbody>
</table>

(b1) Write down the matrix \(X \) and the vectors \(Y \) and \(\beta \) for this problem.
(b2) Calculate \(X'X \).
(b3) Calculate \(X'Y \).
(b4) Calculate the least squares estimate $\hat{\beta}$ of the vector β by using the result $\hat{\beta} = (X'X)^{-1}X'Y$.

(b5) Check the result of (b4) with your calculation in HW#1 (Problem 6).

(5) Do Problem 3.5 (a,b,c) on p. 115.

(6) (Optional) Do Problem 2.28 on p.62.

(7) (Optional) Do Problem 2.29 on p.62.