Title: Internet blackhole Web 2.0 catalyst

CV current; archived
budget & timeline
work samples
results
Earth's vibrational mirrors continue ongoing concepts:

My intercepting conceptual model projects international "coverage" using local wind-monitoring wire and the cellphone to overhear, say, an Alberta Clipper originating above the Arctic Circle which is in direct conflict with a rising southern warm front in twists, sprawling collisions over provinces and states. Phenomena occurrences are monitorable from many points along latitudinal and longitudinal positions. Audio-mirroring of specified coordinates, synchronized as to day, date, WWV or GPS time code, will be by cell phones in realtime monitoring unique wind as on-call throughput sources to the Internet. Synchronous listening would be monitor-able using different 4-up web browsers from many coordinated Earth sites. Alternatively, individuals could listen-in on any current number of specified sequences; or, simultaneously line all the cue-tones on their multiple software tracks and later spatially listen to the full complement of sounding details from major Earth-caused vibrations. Computers generally
will be able to give and take, with each collecting or giving any realtime "batch" as passaroundsounds. windmonitoring DETAILS

doing it

Select two trees or solid poles. Determine the distance between either (minimum of 15 feet). Get an appropriate length of 16 or 22 gauge galvanized steel wire, also accounting for the total girth of the trees. Thread the wire through 3 pucks and wrap these around your first tree trunk or pole at about waist high. Tie the strands together, as they face the second tree, leaving an eight inch double-wrapped pigtail. Cut and let the remainder of the single wire fall to the ground. Thread the eight inch pigtail through one eyebolt of the turnbuckle. Secure the twisted wires by tying these into a multi-joined pigtail around and back onto itself. Be sure that both eyebolt holes are held securely and undo the central part of the turnbuckle until the bolt's shafts disappear in the two holes where they are visible. Attach your previously cut wire to the remaining eyebolt hole and do the pigtail number. Carry this wire to the second tree and repeat the wrap-a-round with pucks deal and then make a secure pigtail before
cutting off the remaining extra wire. Grasping the turnbuckle, hold both "eyes" and tighten the strand short of it breaking. Attach your cellphone mic/cable nearest to the tree trunk. When your wire begins to vibrate from the wind, hold your shortwave radio's speaker near the cellphone mic attached to the wire. Begin this sequence, saying the day and date as your spoken cue and conclude with the GPS or tone signal. Quietly turn radio off. Put in your pocket.
wind monitors for pair of trees

Top View/Cutaway Tree
top view showing pucks turnbuckle and 2 wires

separated at both ends by hardwood blocks which

have concave ridges to accommodate the wires
attaching cell mic
tiewraps secure mic to wire
which is wrapped in soft foam plastic
a single unit, mic and earphone are attached to the wind monitoring wire

with tiewraps enlarged detail
Use a portable battery operated radio tuned to either GPS or WWV time/voice signals.
mic is foam wrapped against wire to prevent rattling; notice the mic is open to the world and could give you the wire and ambient sounds together

RETURN TOPSIDE
The eye of this turnbuckle has been sawed off and two very different wires have been secured.

The cellphone mic could be tie wrapped to several places and would produce differing soundings--providing you have a secure tie-down place for your cellphone.
Thank you for submitting your proposal
Dear leif BRUSH:

Thank you for submitting your proposal to the Rhizome Commissions Program. We have just finished the community approval voting round, and we regret to inform you that your proposal was not selected as one of the finalists.

We wish you the best of luck in seeking support for this project! And we encourage to re-submit again next year.

With questions, contact mailto:commissions@rhizome.org

Yours,

Rhizome

+++ Rhizome.org is a not-for-profit 501(c)(3) organization and an affiliate of the New Museum of Contemporary Art. Donations to Rhizome are tax-deductible to the extent allowed by law. If you would prefer not to receive emails like this one in the future, you can opt out at http://rhizome.org/preferences/email.rhiz.

RETURN TOPSIDE
budget and time line

BUDGET Internet blackwhole Web 2.0 catalyst

2- 16 gauge galvanized steel reels @.................................$10.00
(I have the 1/2 inch brass coil for v.3 windribbon)

8- hockey pucks@ .. $6.00

8- 10 inch turnbuckles @ ..$14.00

7- FM transmitters @ ...$75.00
(requires 8, I have 1)

7- sensors@ .. $104.00

7- preamplifiers @ ...$100.00
(requires 8, I have 1 pair) Eight used, in addition to
the cellphone, on the wind-monitoring wires and oak tree

4- preamp to FM adapters @... $1.75

2- mixers
(I have the DIGI002 & SHURE M67)

8- Audio Adapter MXLR to FXLR wPhase Reverser.............$8.45
(line and mic input adapters for use w/DIGI002)

1- OSX server software @ ...$249.00
$2,484.60

THE TIME LINE
June - abbreviated July: Set up four wind-monitoring wires within our treed and wooded acre about four blocks up from Lake Superior. (I also plan to add V.3 of my windribbon. The V.1 was downed during a severe wind storm.) Install and test sensors and FM transmitters. Use a two mixers to test the four FM and WWV receivers and a mic on through the Mac computer. Test several time periods and determine lowest ambient levels of local and air traffic. Up to this point 2-4- AM time is the most quiet and can serve up subtle wind mummers and provides contrasts from the windy gusts of day times. Identical electronics will be used in tests with a young columnar oak tree. Objective is to expand sensing of the trunk, primary, secondary and its tertiary limbs and branches. Test two-way individual and networked-timed cellphone and WWV/GPS sources. The home page would be passaroundsound.uk.net . Install and test server software in the realtime and transcribed modes using these on-call resources via the Internet.

August - September: Test realtime and transcribed mode availabilities using Server.

October: Test and update any and all aspects of this project, including use of the Internet and especially regarding wind-monitoring wire uses from two-way individual and networked-timed sensor/cellphones and WWV/GPS sources.
work samples scroll down

Haloid print of horizontal galvanized steel strands of the sensed SAIC roof wind monitors. Context shows Lake Michigan winds would blow through windslicers and three roof towers anchored in N.S.E. directions.

Gibbs Fjord, Baffin Island, Canada, a Rowley Island, Canada modulated laser was routed to a nearby microwave station. From here the multiplexed (combined) sounds were uplinked as two channels to the N. Atlantic satellite and were finally demuxed (returned to two channels) sounded and were "seen" in DeDeolen Hall, Rotterdam, Holland as different "aural shapes".

1200 feet of gravel road and floral boundaries with bushes and grasses being monitored in mid-July as a concert for FM radio broadcast. (This sound sculpture consisted of very long crossed wire strands above a dormant winter field in Michigan)

Multi-colored laser sky drawing concepts were executed in this lithograph and where the spelling of Nasturtium occured on low cloud bottoms.

Detail of the Riverharps structural forms including the Bosch (after Hieronymus) - Brush Public Control Booth (without their individual copper shrouds and part of the proposed constructions for the opposing banks of the Iowa river in Iowa City, Iowa

At a given time, the Windscube will yield a minimum of 13,440,616 sound possibilities and combinations. -- an easy task for the 16 bit microprocessor sampling at 8 megaHertz/second.

A Minnesota highway commission version of the original window Draft Monitor had a solar panel and storage battery in the basement. The vibrational sound monitorings from the stainless steel strands was mixed with a "straight line of sight sound collection" of anything falling within these focalized listening pathway. (Four parabolas were used with each facing in a N. S. E or W. direction which were later destroyed; ROOF TOP VIEW: microphone at focal point of parabola, solar panel and copper tubes 4 sq. feet.

Recording session at 30 below zero used 16 and 22 gauge wires about a foot above the ice floe were anchored by steel eye-bolts in the Lake Superior Meany ice floe. These 3 nodes successfully yielded recordings. (Surface winds regularly blew dandruff-sized snow crystals into the strands. However, the wire on the right headed back toward shore where sustained recordings were never made because of a family snowmobile noise).

solar powered / selfbroadcasting Douglas fir & Birch. Both trees each had mixdowns from 4 Shadow
sensors. into two FM transmitters and could be heard w/in a 1/2 mi. radius. (Each tree had a parabola and Shadow sensor (L.) parabola was aimed N.W.; (R), aimed N. They sounded similar when wind-stirred; however, needle and leaf influences were audible. One acted like an antenna because of grounding faults in the pre-amps. The fir allowed me to hear German and French broadcasts.

Satellite/KSJJN stereo feed of Terraininstrument sounds from Duluth, Minnesota were input into a modulated laser beam. It left the Walker Art Center and was received on a front surface mirror afixed to the bark of "the 1856 Loring tree" (Simultaneously this single light was split into two beams. One was directed to another front surface mirror anchored to the 202 microprocessor and these Duluth sounds were manipulated using the two speaker planes. The second beam was received and input into amplifiers which fed the overhead tree's speakers).

Laser and windribbon proposal using front surface mirrors and solar panels..

Aimed skyward and between trees this recycled four foot dish uses its epicentral microphone to collect focused sounds within its concavity and are output to the FM transmitter for DSPing at the computer. (one of several recycled dishes used in earlier directional sound recordings.

Plans of this oaktree are to attach multiple vibration-monitoring sensors to embedded stainless steel pins. These would be inserted into primary, secondary, tertiary limbs and branches and on several main trunk positions. Dependent upon breezes and wind gusts sensors would monitor all tree vibrations, and provide for on-call FM broadcasting and computer inputs.

Retro fit this recycled home receiving dish with sensor/cellphone to focus on Earth's phenomena and away from the crowded ring of Earth-orbiting satellites. The sensor a/or cellphone fits atop the protruding plastic-nosed receiver, secured with tiewraps. The arm extension, on this dish, moves in or out to focus/collate sounds it collects.
Cases and Windrubber/Sensors

HE Nd out in MODULATED LASER
FM TRANSMITTERS IN
MIXER
PHOTOMETER
8x4
COMPUTER
ASOUND CARD
NICECAST
INTERNET
REALTIME/ON CALL