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Abstract The manipulation of deformable objects is an
important problem in robotics and arises in many appli-
cations including biomanipulation, microassembly, and ro-
botic surgery. For some applications, the robotic manipula-
tor itself may be deformable. Vision-based deformable ob-
ject tracking can provide feedback for these applications.
Computer vision is a logical sensing choice for tracking de-
formable objects because the large amount of data that is
collected by a vision system allows many points within the
deformable object to be tracked simultaneously. This article
introduces a template based deformable object tracking al-
gorithm, based on the boundary element method, that is able
to track a wide range of deformable objects. The robustness
of this algorithm to occlusions and to spurious edges in the
source image is also demonstrated. A robust error measure
is used to handle the problem of occlusion and an improved
edge detector based on the Canny edge operator is used to
suppress spurious edges. This article concludes by quanti-
fying the performance increase provided by the robust error
measure and the robust edge detector. The performance of
the algorithm is also demonstrated through the tracking of a
sequence of cardiac MRI images.
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1 Introduction

Deformable object tracking has many important applica-
tions. Application areas include medical imaging (Metaxas
1997; McInerney and Terzopoulos 1993), robotic manipu-
lation of deformable objects (Nakamura et al. 2001; Sun
and Nelson 2002), and vision-based force measurement
(Greminger and Nelson 2004; Wang et al. 2001). The use of
elastic models to track these deformable objects is well es-
tablished in computer vision. There are two classes of meth-
ods that are commonly used. One class provides good track-
ing results for a wide variety of objects but uses deforma-
tion models that are not based on the deformation of phys-
ical solids. This class includes the popular active contour
model methods. The second class of tracking algorithms
uses physics based models to track a smaller class of ob-
jects more robustly and to a higher degree of accuracy. The
method presented in this article builds upon the methods in
this second class.

1.1 Active Contour Model Based Methods

Kass et al. (1988) proposed a method to track contours in
an image using a 2D elastic model called an active contour
model or a snake. The snake consists of a 2D spline which
has elastic properties and is attracted to edge features within
the image. The spline is matched to the image by the mini-
mization of an error function that has terms for internal en-
ergy, image energy, and constraint energy. There are many
methods that build upon the active contour model frame-
work. Yuille et al. (1992) used a deformable template match-
ing algorithm to track facial features. Their splines were de-
fined with degrees of freedom that allowed the splines to
take the shape of facial features.
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The active contour family of tracking algorithms are ef-
ficient at image segmentation and tracking general objects.
These methods, however, are not the most robust for less
general scenes where there is a priori knowledge about the
objects being tracked. For these situations it is more efficient
to use a model-based approach as described in the next sec-
tion.

1.2 Model-Based Methods

Metaxas (1997) introduced the use of 3D meshes with
physics-based elastic properties to track both rigid and non-
rigid objects. The primary application of this physics based
approach was to track tissues in medical images. The use
of physics based models allows for more robust tracking re-
sults than can be obtained by using a general active con-
tour model based approach. Tsap et al. (1998) proposed a
method to use nonlinear finite element modeling (FEM) to
track non-rigid objects in order to detect the differences in
elasticity between normal and abnormal skin. There has also
been work in using FEM based deformable object track-
ing algorithms to measure forces from images. Wang et al.
(2001) used Finite Element Modeling (FEM) techniques to
derive the forces that were applied to deformable microparts.
Their method is limited by the need to track each FEM mesh
point in the image. The algorithm presented here builds upon
these existing model-based deformable object tracking algo-
rithms.

1.3 Deformable Object Tracking Using the Boundary
Element Method

As mentioned above, existing model based tracking algo-
rithms have used the finite element method (FEM) to model
material deformations. The boundary element method
(BEM), like FEM, is a method to model an elastic object.
BEM differs from FEM in the way the object is meshed.
BEM only requires the boundary of the object to be meshed
while FEM requires the interior and the boundary of the ob-
ject to be meshed. Figure 1 shows a microgripper with an

Fig. 1 Comparison between a 2D boundary element mesh (bottom)
and a finite element mesh (top)

FEM mesh on the top jaw and a BEM mesh on the bottom
jaw. The boundary mesh property of BEM makes it uniquely
suited to computer vision problems because edge detection
can be used to easily locate the boundary of an object. An
even more important benefit of a BEM mesh is that it can
readily handle large deformations without the need for mesh
refinement. The elements of FEM meshes may become ill-
conditioned or flip normals if they experience a large defor-
mation.

Enhancements are also presented that make the de-
formable tracking algorithm robust to occlusions in the im-
age and to spurious edges in the image. A robust error mea-
sure, which replaces the least squares error measure, is used
to handle the occlusion problem. To handle the spurious
edge problem, a modified edge detection algorithm is pre-
sented that is able to suppress spurious edges. The modified
edge detection algorithm is based off of the Canny edge de-
tection algorithm and uses an artificial neural network to
classify each edge as either a desired edge or a spurious
edge.

This article is organized as follows: An overview of the
deformable object tracking algorithm used is presented in
Sect. 2. Section 3 presents the boundary element method and
the method used to numerically solve the boundary element
problem. The actual deformable template matching algo-
rithm that makes use of the solution to the boundary element
problem is presented in Sect. 4. Section 5 presents tracking
results for the deformable object tracking algorithm. Modi-
fications to make the tracking algorithm robust to occlusions
and spurious edges are presented in Sect. 6. These modifica-
tions include the use of a robust error measure and the use of
a new edge detection algorithm which suppresses spurious
edges. Quantitative tracking results are presented in Sect. 7.
The results of tracking a series of Cardiac MRI images are
also presented in this section. Finally, a summary and con-
cluding comments are presented in Sect. 8.

2 Overview of the Deformable Object Tracking
Algorithm

A template based deformable object tracking algorithm is
used in this article. The image is first converted to a binary
edge image using the Canny edge operator (Canny 1986),
and then the error is measured between the image and the
template using a least squares error measure. The template
has both rigid body and deformable degrees of freedom. The
deformable degrees of freedom are provided by the bound-
ary element method. The error between the template and the
image is minimized using a gradient based numerical min-
imization routine. This section describes the error measure
used, the template degrees of freedom, and the minimization
of the error function.
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2.1 The Least Squares Error Measure

The template is represented by a list of 2D vertices ri and the
edge pixels in the current image are represented by the list
of 2D vertices wi . The registration algorithm minimizes the
distance squared between the transformed template vertices
r′
i and the nearest image edge vertices wi where the tem-

plate vertices are transformed by a template transformation
T with degrees of freedom represented by the vector x.

r′
i = T (ri ,x). (1)

The error between the transformed template vertices r′
i and

the image vertices wi is defined by the following function

E(x) =
M∑

i=1

‖r′
i − wi‖2, (2)

where r′
i is the position vector of the ith edge pixel of the

template transformed by (1); wi is the position vector of the
edge pixel in the image that is closest to the point r′

i ; and M

is the number of edge pixels in the template. This error func-
tion sums the square of the distance between each template
vertex and the nearest image edge pixel. Figure 2 shows an
example of calculating this error with a simple template and
a simple edge image. Since the transformed template ver-
tices r′

i are transformed by the template transform T , E will
be a function of the transformation’s degrees of freedom x.
By minimizing E, the values of x that best match in the im-
age in a least squares sense will be found.

2.2 The Template Degrees of Freedom

The degrees of freedom of the template are defined next. The
degrees of freedom consist of a rigid body motion contri-
bution and a deformable body contribution. The rigid body

Fig. 2 Example of measuring error between a template and an image
where di is the distance from the template vertex r′

i to the nearest image

vertex. The error in this example is E = ∑10
i=1 d2

i

component is an affine transformation and the deformable
body component is based on elasticity theory.

2.2.1 The Rigid Body Motion Degrees of Freedom

For the rigid body case the template affine transform is de-
fined as

r′ = T (r, θ, S,X) = A(r)

= X +
[

S cos θ −S sin θ

S sin θ S cos θ

]
r, (3)

where θ is the angle of rotation, S is the scale factor, and X
is the translation vector. Figure 3 shows how these parame-
ters are defined. The error function between the transformed
template vertices r′

i and the image vertices wi can be written
as

E(θ,S,X) =
M∑

i=1

‖r′
i − wi‖2. (4)

2.2.2 The Deformation Degrees of Freedom

Since the goal of the method is to track deformable objects,
a template with only rigid body motion degrees of freedom
is not sufficient. It is necessary to add non-rigid motion de-
grees of freedom to the template. Various deformable ob-
ject tracking algorithms can be used. The deformable object
tracking algorithm presented in this article uses the bound-
ary element method (BEM) to model deformations.

Deformations are expressed in general by the following
equation

u = D(r, {t}), (5)

where D is the deformation model and {t} is the traction
distribution applied to the object. Using the above equation,
the template transformation T can be redefined as

r′ = T (r, θ, S,X, {t})

= X +
[

S cos θ −S sin θ

S sin θ S cos θ

]
(r + u), (6)

Fig. 3 Rigid body template degrees of freedom
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where each template vertex r is translated by the vector u
obtained using (5) before applying the affine transformation.
Since u is a function of {t}, the new template transformation
T is now a function of the applied traction {t} in addition
to the affine transformation parameters, θ , S, and X. The
resulting error function is

E(θ,S,X, {t}) =
M∑

i=1

‖r′
i − wi‖2. (7)

2.3 Minimizing the Error Function

The error function (7) is minimized by the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method, a gradient-
based multi-variable minimization technique (Fletcher
1987). The BFGS method differs from the steepest decent
method in that it uses information from previous iterations to
approximate the Hessian matrix giving it convergence rates
similar to second-order minimization techniques without the
overhead of computing a second derivative.

3 The Boundary Element Method

As was mentioned in the previous section, the boundary el-
ement method is used to model the deformation of the tem-
plate. The boundary element method is a technique to solve
partial differential equations by reformulating the original
PDE into an integral equation over the boundary of an ob-
ject. The solution to this boundary integral equation (BIE) is
the solution to the original PDE. Because the integral equa-
tions are over the boundary of the object, only the boundary
of the object must be partitioned.

The linearly elastic 2D plane stress model is used to
model the deformation of the deformable template. The PDE
for the 2D plane stress elasticity problem can be expressed
in terms of displacements uα(x) by (Sokolnikoff 1983)

μ∇2uα + μ

(
1 + ν

1 − ν

)
∂

∂xα

(
∂u1

∂x1
+ ∂u2

∂x2

)
+ Fα = 0, (8)

where α = 1,2. Fα(x) is a body force applied to the object,
such as gravity or a force due to acceleration. This equation
is known as Navier’s equation of plane stress and is defined
over a 2D domain R with a boundary ∂R. The shear mod-
ulus μ and Poisson’s ratio ν completely define the material
properties of an isotropic linearly elastic object. The shear
modulus can be expressed in terms of the modulus of elas-
ticity E by the following equation

μ = E

2(1 + ν)
.

The boundary conditions for (8) can be expressed as a pre-
scribed displacement vector over the boundary ∂R. This is

known as the Dirichlet problem. The boundary condition
can alternatively be expressed as a prescribed traction vec-
tor over the boundary where, in 2D, the traction vector has
the units of force per length. This is known as the Neumann
problem.

In order to convert Navier’s equation (8) into a boundary
integral equation, it is first necessary to obtain the funda-
mental solutions for (8). The fundamental solutions can then
be used to construct the boundary integral equation.

3.1 Fundamental Solutions

The fundamental solutions for the plane stress elasticity
problem are the solutions to (8) for a point load F of unit
magnitude applied to a point p in an infinite 2D medium
of unit thickness. The fundamental solutions are sometimes
referred to as Kelvin solutions, Green’s functions, or singu-
lar solutions. The displacement of a point q in an infinite
medium with a unit load applied at p is known as the dis-
placement fundamental solution and is given by (Beer 2001)

Ulk(p, q) = C1

[
C2 ln

1

r
δlk + (pl − ql)(pk − qk)

r2

]
, (9)

where

r = [(p1 − q1)
2 + (p2 − q2)

2] 1
2 ,

C1 = 1

8πμ(1 − ν)
,

C2 = 3 − 4ν.

δlk is the Kronecker delta, and l, k = 1,2. Ulk corresponds to
the displacement of the point q in the kth direction due to a
unit load in the lth direction. The displacement fundamental
solution is shown graphically in Fig. 4 for the unit load F =
(1,0).

There is also a fundamental solution that gives the trac-
tion at a point q in an infinite medium due to a unit load
at p. The traction vector must be defined in reference to a
line l that cuts through the material. The traction vector is
the force distribution that would need to be applied to the
object in order to maintain the same state of stress if it were
to be cut by the line l. The traction fundamental solution can
be written as

Tlk(p, q) = C3

r

[
∂r

∂n

(
C4δlk + 2

(pl − ql)(pk − qk)

r2

)

+ C4

(
nl(pk − qk)

r
− nk(pl − ql)

r

)]
, (10)

where

∂r

∂n
= n1(p1 − q1)

r
− n2(p2 − q2)

r
,
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C3 = 1

4π(1 − ν)
,

C4 = 1 − 2ν

and nl is the outward normal vector to the line l at the
point q . The traction fundamental solution is shown graph-
ically in Fig. 4 for the unit load F = (1,0). Note that the
fundamental solutions are singular when p = q .

3.2 Boundary Integral Equations

The fundamental solutions (9) and (10) are used to con-
struct the boundary integral equations for the elasticity prob-
lem (8). The integral equation that relates interior displace-
ments to boundary displacements and boundary tractions
is known as Somigliana’s identity and is as follows (Rizzo
1967)

ui(p) =
∫

∂R

[Uij (p, q)tj (q) − Tij (p, q)uj (q)]d∂R(q) (11)

for ∀p ∈ R\∂R, i, j = 1,2, uj is a displacement vector, and
tj is a traction vector. The fundamental solutions act as the
kernel functions in Somigliana’s identity. The singularities
in these kernel functions do not affect the evaluation of the
integral equation, because p cannot be on the boundary ∂R

so p and q cannot coincide. Somigliana’s identity gives the
displacement of any point p within a body, but it requires
knowledge of the displacements and tractions on the bound-
ary. In general, only the displacements on the boundary are
known in the case of the Dirichlet problem or only the trac-
tions on the boundary are known in the case of the Neu-
mann problem. In order to solve the elasticity problem it is

Fig. 4 Displacement fundamental solution on top and traction funda-
mental solution on bottom

necessary to have an integral equation where the point p is
on the boundary of the object. This equation is known as
Somigliana’s boundary identity and is (Rizzo 1967)

cijuj (p) = PV
∫

∂R

[Uij (p, q)tj (q)

− Tij (p, q)uj (q)]d∂R(q) (12)

for ∀p ∈ ∂R. The term cij is a constant that is 1
2δij if the

boundary ∂R is smooth at the point p. If a corner exists at
p then the value of cij depends on the angle formed by the
corner. It will be seen in the next section that the explicit
calculation of cij will be unnecessary in the numerical solu-
tion of the problem. The PV indicates that the integral exists
only in the sense of a Cauchy principal value because the in-
tegrand becomes unbounded when p = q due to the singular
kernel functions. The numerical treatment of these singular-
ities will be addressed in Sect. 3.3.

3.3 Partitioning of the Boundary Integral Equations

In order to numerically solve the boundary integral equation
(12) it is necessary to partition the boundary of the object.
The partitioned boundary is shown in Fig. 5. The boundary
is partitioned into elements with each element having three
nodes. The ith node of the mesh is at the position xi . The
values of displacement u and traction t are defined at each
node, and interpolation is used to evaluate the displacement
and traction values between the nodes. Quadratic interpola-
tion is used with the following shape functions (Beer 2001)

φ1(s) = 1

2
s(s − 1),

φ2(s) = (1 − s2), (13)

φ3(s) = 1

2
s(s + 1),

Fig. 5 Boundary mesh
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Fig. 6 Elemental interpolation of geometry x, displacements u, and
tractions t

where s is a parameter that varies from −1 to 1 along the
length of an element as shown in Fig. 6. The value of u at
any point along an element is given by

ui(s) =
3∑

j=1

φj (s)u
j
i , (14)

where the superscript j indicates the node number. An in-
terpolation equation analogous to (14) can be written for the
object geometry x and the surface tractions t . Now that it
has been defined how x, u and t are interpolated within an
element, it is necessary to decide what continuity will be
enforced between elements. For the boundary geometry x

and the boundary displacements u at least C0 continuity is
needed between elements, otherwise there could be gaps in
the boundary of the object. It could be required that x and
u also have continuous derivatives between boundaries, but
this requirement would not allow ∂R to have corners. Be-
cause of the need to model objects with corners, only C0

continuity will be enforced on x and u between elements. In
order to model objects with corners, it is necessary to place
an element boundary at the location of the corner.

The continuity requirement between elements for bound-
ary tractions will be more relaxed because it is possible to
have surface loadings that are discontinuous. Figure 7 shows
a portion of a partitioned boundary that has a corner be-
tween elements 1 and 2. In this figure the geometry x has
C0 continuity between the two elements, while the traction
t is discontinuous between the two elements. Since continu-
ity is not required for the traction vector between elements,
there will be more traction degrees of freedom then there are
displacement degrees of freedom. In general for a boundary
element model with N elements, there are 2N nodes, 4N

displacement degrees of freedom (each node has an u1 and
an u2 degree of freedom) and 6N traction degrees of free-
dom.

Next, (12) is expressed in a form that can be numerically
computed. The first step is to break the integral in (12) into
N integrals, one for each element. Integrating over each el-

Fig. 7 Boundary tractions t can have discontinuities between elements
while boundary geometry x must have C0 continuity between elements

ement the following equation is obtained

cijuj (p) =
N∑

k=1

∫ 1

−1

[
Uij (p, qk(s))

(
3∑

n=1

φn(s)t
k,n
j

)

− Tij (p, qk(s))

(
3∑

n=1

φn(s)u
k,n
j

)]
J k(s)ds,

(15)

where

qk
i (s) =

3∑

n=1

φn(s)x
k,n
i ,

J k(s) = d∂R

ds

=
√√√√

(
3∑

n=1

∂φn(s)

∂s
x

k,n
1

)2

+
(

3∑

n=1

∂φn(s)

∂s
x

k,n
2

)2

.

The Jacobian term J k(s) is required, because the integration
is now over the local parameter s. Since the nodal values
uk,n and tk,n are constant over each element, they can be
taken out of the integral yielding

cijuj (p) =
N∑

k=1

3∑

n=1

t
k,n
j

∫ 1

−1
Uij (p, qk(s))φn(s)J

k(s)ds

−
N∑

k=1

3∑

n=1

u
k,n
j

∫ 1

−1
Tij (p, qk(s))φn(s)J

k(s)ds.

(16)
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Switching to matrix notation

cu(p) +
N∑

k=1

3∑

n=1

	Tk
nuk

n =
N∑

k=1

3∑

n=1

	Uk
ntkn, (17)

where

	Uk
n = ∫ 1

−1 φn(s)U(p, qk(s))J k ds,

	Tk
n = ∫ 1

−1 φn(s)T(p, qk(s))J k ds
(18)

and c, 	Tk
n, and 	Uk

n, are 2 × 2 matrices and uk
n and tkn

are 2 × 1 vectors. The boundary integral equation has now
been partitioned into sums of integrals over each element.
This equation applies for all points p on the boundary of
the object including the nodal points. Next, (17) is applied
to all 2N nodes in the boundary element mesh to obtain 2N

vector equations (4N scalar equations) that can be used to
solve the elasticity problem. These equations are

cu(pi) +
N∑

k=1

3∑

n=1

	Tk
nuk

n =
N∑

k=1

3∑

n=1

	Uk
ntkn, (19)

where i = 1,2, . . . ,2N . The equation can now be written in
a matrix form that can be used to solve the elasticity problem
as follows

[I ]{cu} + [F ]{u} = [G]{t} (20)

where {u} is a 4N × 1 vector containing all of the nodal dis-
placements and {t} is a 6N × 1 vector containing all of the
nodal tractions. [F ] and [G] are 4N × 4N and 4N × 6N

matrices, respectively, which consist of the element inte-
grals (18). It should be noted that for the diagonal entries
of these matrices, the point pi will be coincident with one
of the nodes in the element making the kernel functions sin-
gular. Because of this, special care needs to be taken with
these integrals. The term [I ]{cu} can be combined with the
term [F ]{u} to obtain the following equation

[F ′]{u} = [G]{t}, (21)

where the matrix [F ′] contains the c term information along
its diagonal. The matrices [F ′] and [G] depend completely
on the geometry of the object and can be computed in ad-
vance for a given object. The off diagonal terms of these
matrices can easily be computed using a standard quadra-
ture routine such as Gauss integration. The singularity in the
diagonal elements of [G] is due to the singularity in the dis-
placement fundamental solution (9). This singularity is of
the form ln r which can be computed numerically if the ap-
propriate quadrature rule is used. The package used to cal-
culate the singular integrals was the GNU Scientific Library
(GSL) which uses an adaptive routine specifically designed
to handle singularities (Galassi et al. 2001).

The singularity on the diagonal terms of the matrix [F ′]
is more difficult to evaluate because the singularity in these
terms is due to the singularity in the traction fundamental
solution (10) which is of the form (1/r). This singularity
cannot be readily computed numerically, but it turns out that
the explicit calculation of these integrals can be avoided by
making the following observation (Beer 2001). If the vector
{u} consists of only a rigid body motion, the product [F ′]{u}
will be zero. This is true because a pure rigid body motion
of an elastic object must lead to a stress free state constrain-
ing {t} to be zero. If {t} were not zero, there would some
deformation in the object and the displacement would not
be pure rigid body displacement. From this observation, the
following equations can be generated

[F ′]{1 0 1 0 · · · 1 0 }T = 0,

[F ′]{0 1 0 1 · · · 0 1 }T = 0.
(22)

Using these equations, the two singular entries in each row
of the matrix can be expressed in terms of the other non-
singular entries in the row. Note that the c term from (20)
was also contained in the diagonal of the matrix [F ′], so it
is not necessary to explicitly calculate that term.

Now that the system matrices [F ′] and [G] are defined,
a solution to the elasticity problem can be obtained. For the
Dirichlet problem, the nodal displacements {u} are known
and (21) can be used to calculate the nodal tractions {t}. For
the Neumann problem, the nodal tractions {t} are known and
(21) can be used to calculate the nodal displacements {u}.
For the deformable template application, the Neumann prob-
lem is the problem of interest since it is necessary to apply
a force distribution to the template and then calculate the
resulting nodal displacements.

3.4 Solution of the Neumann Problem

The Neumann problem is defined as the case where the sur-
face tractions {t} are known and the surface tractions {u}
must be computed using (21). It can be shown (Jaswon and
Symm 1977) that a solution to the Neumann problem exists
if and only if

∫

∂R

ti(q)d∂R(q) = 0, (23)

where i = 1,2. An object that satisfies (23) is said to be in
a state of static equilibrium. If (23) is satisfied then there
are an infinite number of solutions {u} to (21). All of the
solutions differ only by a rigid body displacement. Because
there are an infinite number of solutions, the matrix [F ′] is
not invertible. The rank of [F ′] is 4N − 3. There is one lin-
early dependent row in [F ′] for each of the three possible
2D rigid body motions. Since [F ′] is not invertible, singu-
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lar value decomposition (SVD) is used to solve (21). SVD
decomposes [F ′] into the following form (Press et al. 1993)

[F ′] = [U ][W ][V ]T, (24)

where [W ] is a diagonal matrix consisting of the singular
values of [F ′] and [U ] and [V ] have columns that are or-
thonormal. Because the rank of [F ′] is 4N − 3, three of the
singular values will be zero or very nearly zero. A unique
solution can be obtained to the Neumann problem by the
following equation (Press et al. 1993)

{u} = [V ][diag (1/wj )][U ]T[G]{t}, (25)

where wj are the singular values and the value (1/wj )

is set to zero for the three singular values near zero.
This method finds the solution with the smallest magni-
tude ‖{u}‖2. This has the effect of removing the rigid
body motion component from the solution. Defining [A] =
[V ][diag (1/wj )][U ]T[G], (25) can be rewritten as

{u} = [A]{t}, (26)

where [A] only depends on the object’s geometry and can
be computed off-line.

Once the nodal displacements {u} are found by solving
the Neumann problem, the displacement at any point on
the boundary can be found by using the interpolation func-
tions (13).

4 The BEM Deformable Template Matching Algorithm

4.1 The Error Function for BEM Deformable Object
Tracking

BEM is used to model the non-rigid portion of the object’s
motion. To do this, the template is deformed according to
the BEM model before performing the affine transformation.
The deformation transformation (6) becomes

r′ = T (r, θ, S,X, {t})

= X +
[

S cos θ −S sin θ

S sin θ S cos θ

]
(r + u), (27)

where u(r, {t}) is the displacement of the template edge
pixel r due to the applied traction distribution {t} on the
boundary of the object. The displacement vector u(r, {t})
is obtained from the solution to the Neumann problem (26).
The error function (7) becomes

E(θ,S,X, {t}) =
M∑

i=1

‖r′
i − wi‖2. (28)

Minimizing the above error function will give the traction
distribution {t} that best fits the image in a least squares
sense. As mentioned previously, in order for there to be
a solution to the Neumann problem, {t} must satisfy (23).
Therefore, the minimization of (28) is a constrained min-
imization problem. The next section demonstrates how to
convert this constrained minimization problem into an un-
constrained minimization problem of reduced dimensional-
ity.

4.2 Constrained Minimization

The Neumann problem can only be solved if the equilib-
rium condition (23) is satisfied. Therefore, when (28) is min-
imized, {t} must be constrained to satisfy (23). A method is
presented in this section that solves the constrained mini-
mization problem efficiently.

The first step is to express (23) in discrete form. The equi-
librium condition can be partitioned into sums of integrals
over each of the N elements as follows:

N∑

k=1

3∑

n=1

	Pntn =
[

0
0

]
, (29)

where

	Pn =
[

1 0
0 1

]∫ 1

−1
φn(s)J (s)ds. (30)

This discrete form can now be written as a matrix equation

[P ]T{t} =
[

0
0

]
, (31)

where [P ] is a 6N × 2 matrix. The above constraint equa-
tion is a linear equality constraint. The Generalized Elim-
ination Method as described by Fletcher (1987) is used to
eliminate two variables from the optimization problem by
applying a linear transformation. Applying this transforma-
tion, the minimization problem (28) is recast in the form:

E(θ,S,X, [Z]{y}) =
M∑

i=1

‖r′
i − wi‖2, (32)

where {Z} is a 6N × (6N − 2) matrix. Minimizing (32)
gives values for θ , S, X and {y} that best match the im-
age in a least squares fashion. The traction distribution is
obtained by the transformation {t} = [Z]{y}. The matrix [Z]
acts as a transformation that maps any {y} ∈ �6N−2 to a trac-
tion {t} ∈ �6N which satisfies equilibrium. As suggested by
Fletcher, QR decomposition can be used to find a [Z] sat-
isfying this property (the choice of [Z] is not unique). The
QR decomposition for [P ] is written as

[P ] = [Q]
[

R

0

]
= [Q1Q2]

[
R

0

]
= [Q1][R], (33)
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Fig. 8 (a–c) BEM deformable
template results when applied to
a microgripper, (d–f) to a foam
block, and (g–i) to a mouse
oocyte (approximately 50 µm in
diameter in the undeformed
state). Images (b) and (e) show
the initial position and shape of
the template used to obtain the
tracking solutions shown in
images (c) and (f) respectively

where [Q] is a 6N × 6N orthogonal matrix, [R] is a 2 × 2
upper triangular matrix, and [Q1] and [Q2] are 6N × 2 and
6N ×6N −2 matrices, respectively. The transformation [Z]
is set to [Q2].

The template matching algorithm is now in an uncon-
strained form of reduced dimensionality, (32), that can be
minimized using standard gradient based minimization tech-
niques.

5 Initial BEM Template Matching Results

The results of the BEM template matching algorithm ap-
plied to a microgripper, a foam block, and a mouse embryo
cell are shown in Fig. 8. In each of the tracking examples,
the initial traction distribution is taken to be zero. The mi-
crogripper in Figs. 8(a–c) is used for robotic micro-assembly
tasks. A 90 node BEM mesh is used to model the gripper and
is shown in Fig. 9. Figure 8(a) shows the undeformed grip-
per, Fig. 8(b) shows the template’s initial location and shape,
and Fig. 8(c) shows the tracking solution. Only a portion of
the gripper’s contour was used in tracking. This is necessary
because much of the gripper is occluded by the tube that
closes it (Sect. 6 describes a method to handle this occlusion
in a robust way without altering the template). The modulus
of elasticity used by the BEM model was set to that of spring
steel, the material used to construct the gripper.

Fig. 9 BEM mesh used to track microgripper

Figures 8(d–e) shows the template registered to a foam
block. The foam block registration example demonstrates
the ability of the BEM mesh to accommodate large defor-
mations. The modulus of elasticity used by the BEM model
was set to a relatively low value for this example, and the
cell example that follows, to allow for the large deforma-
tions.

Figures 8(g–i) show three frames from the tracking of a
mouse oocyte. The cell is being robotically injected (Sun
and Nelson 2002). Tracking deformations of the cell can
provide useful feedback for the robotic injection process and
can be used in combination with a force sensor to learn more
about the material properties of cells.

Figure 10 shows an example of the BEM deformable ob-
ject tracking algorithm applied to computer generated im-
age. Figure 10(a) shows the tracking solution. The unde-
formed boundary element mesh is shown in Fig. 10(b) and
the traction distribution that was obtained by minimizing
(32) is shown in Fig. 10(c).
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Fig. 10 (a) BEM tracking solution, (b) undeformed mesh, and (c) the
traction distribution {t} obtained by minimizing the error function

6 Deformable Object Tracking Robust to Occlusions
and Spurious Edges

In order for the deformable object tracking algorithm to be
a useful feedback mechanism for robotics applications, it
must be robust. Common causes of tracking errors are the
presence of spurious edges and occlusions of the object be-
ing tracked. Spurious edges are edges from objects other
than those from the object of interest. These edges act to
attract the deformable template away from the object of in-
terest. Spurious edges must be eliminated in order to ob-
tain accurate results. Occlusions occur when an object in the
scene blocks the view of the object of interest. Occlusions
can occur frequently in robotic applications and the tracking
algorithm must be able to provide useful results with the in-
formation available even when there is significant occlusion.

This section presents modifications to the BEM de-
formable object tracking algorithm that make it robust to
spurious edges and occlusions. It is first shown how this al-
gorithm is modified to include a robust error measure that
addresses the problem of occlusion. Next, a modification to
the edge detection algorithm is introduced that rejects spuri-
ous edges. Two methods are used to reject spurious edges, an
interior intensity based edge classifier and a neural network
edge classifier. The performance of each of these improve-
ments is demonstrated for the problem of tracking a gripper

in a highly cluttered environment in Sect. 7. Figure 11 shows
the BEM tracking algorithm applied to this microgripper.

6.1 Robustness to Occlusion

The least squares error measure used to obtain (7) works
well in many situations, however, use of this error measure
implicitly assumes that the errors between the template and
the edge image are normally distributed (Draper 1998). Sit-
uations where the errors in the image are not normally dis-
tributed often occur. One common case where errors are not
normally distributed occurs when there is occlusion. A least
squares error measure does not provide the correct solution
when there is occlusion as can be seen in Fig. 12(b).

A measure not affected by occlusion is required. The
Cauchy error measure given by

ρ(r) = log

(
1 + 1

2
r2

)
(34)

where r is the error, has robust properties particularly rele-
vant to this problem (Stewart 1999). For the template match-
ing application, r is defined to be the distance from each
template vertex to the nearest image edge vertex. Using this
error function, the minimization problem (28) becomes

E(θ,S,X, {t}) =
M∑

i=1

log

(
1 + 1

2
‖r′

i − wi‖2
)

. (35)

This error measure was chosen both for its robust proper-
ties and because it has a defined derivative for all values of
‖r′

i − wi‖2. This is a required property of the error func-
tion since a gradient based minimization algorithm is used
to minimize the error function. Using the Cauchy robust er-
ror measure, a deformable object can be successfully tracked
even when a large portion is occluded. A tracking result us-
ing the Cauchy error measure is shown in Fig. 12(c).

The Cauchy error measure has better performance in this
situation because the Cauchy error measure penalizes tem-
plate pixels that are far from image edge pixels less than
the least squares error measure does. This can be seen from
Fig. 13 which shows both the least squares error measure
and the Cauchy error measure. This property of the Cauchy
error measure causes the error function to ignore the oc-
cluded portions of the object being tracked.

6.2 Robustness to Spurious Edges

When tracking objects in real world scenes there are often
edges present that are not from the object being tracked.
These spurious edges can draw the template away from the
object of interest. In this section, a modified Canny edge op-
erator is presented that only preserves edges from the object
being tracked by using information known about the object.
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Fig. 11 Deformable object
tracking example using BEM to
model deformations. The
template’s initial condition is
shown on the left and the
tracking solution is shown on
the right

Fig. 12 Effect of error measure
on tracking results when
tracking a partially occluded
object. (a) The initial template
location and shape for both
algorithms, (b) the tracking
solution when using the least
squares error measure, and
(c) the tracking solution when
using the Cauchy error measure

Figure 14 illustrates the problem. Figure 14(a) shows an im-
age containing the object to be tracked (the upper left gray
rectangle). All of the edges in the original image are shown
in Fig. 14(b) and Fig. 14(c) shows only the edges from the
object that is to be tracked. In order to obtain the edge image
shown in Fig. 14(c) it is necessary to probe the pixel values
on either side of the edges shown in Fig. 14(b) to determine
if the edge in question bounds the object being tracked. For
example, in Fig. 14, if an edge has the dark gray color of the
rectangle being tracked on one side, then the edge should be
preserved. In this section a modification to the Canny oper-
ator that suppresses unwanted edges is presented.

The Canny edge detector uses the image gradient and the
continuity of edges to determine whether an edge candidate
should be accepted or rejected. This algorithm works well
to find general edges, however, it does not consider infor-
mation that may be available about the object being tracked.
By using some information about the object of interest, the Fig. 13 Comparison between least squares and Cauchy error measures
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Fig. 14 Edge detection in a
cluttered scene: (a) original
scene, (b) edges in the scene,
and (c) edges from the object of
interest

edges in the scene that are not from this object can be re-
moved. The first step is to perform a Canny edge detection
operation on the image. The ith edge pixel found by the
Canny operator is labeled wi . For each edge pixel, wi , sam-
ples are taken in the positive direction of the edge normal
and in the negative direction of the edge normal. The edge
normal ni is defined by:

ni = ∇Ii

‖∇Ii‖ (36)

where ∇Ii is the gradient of the image at the location of edge
vertex wi . The edge normal sample vector in the positive
direction is referred to as S+

i and in the negative direction
is referred to as S−

i . Figure 15 illustrates the edge normal
samples for a representative edge pixel wi . The samples are
computed using bilinear interpolation and the samples are
spaced one pixel apart. The number of samples taken in each
direction depends on the application. Anywhere from five to
twenty edge samples were used for the results presented in
this article.

Once the edge normal sample vectors have been ob-
tained, they are used to determine whether the edge pixel
should be accepted or rejected. This is a classification prob-
lem. Let f be the classifier function where f is defined so
that an edge is accepted if f (S+

i ,S−
i ,ω) = 1 and is other-

wise rejected. The vector ω represents the parameters that
define the classifier. Two forms for f are used in this article:
one compares the edge normal sample vector to the known
intensity of the interior of the object being tracked and the
other uses a neural network model to evaluate whether an
edge normal sample vector represents the desired object or
not.

Both approaches discussed in this section assume that the
intensity of the pixels representing the interior of the ob-
ject being tracked can be distinguished from the intensity of
those that represent the background of the image. The inte-
rior intensity based classifier has the additional assumption
that the intensity of the object being tracked is uniform. The
neural network classifier does not require a uniform interior
intensity of the object being tracked since the neural network

Fig. 15 Edge samples used to test whether or not to keep an edge pixel

is able to classify multiple input edge normal vector inten-
sities as being part of the object of interest. This property
of the neural network edge classifier is due to the general
approximation property of neural networks.

6.2.1 Interior Intensity Based Classifier

The first approach to classification compares the edge nor-
mal sample vectors, S+

i and S−
i , to the known intensity C

of the interior of the object. The error between the edge nor-
mal sample vectors and the interior intensity is computed for
each edge pixel in the image. If the error is below a thresh-
old value, H , then the edge pixel is accepted. The classifier
f is defined as

f (S+
i ,S−

i ,ω) =
⎧
⎨

⎩
1 if ‖S+

i − C‖ < H,

or ‖S−
i − C‖ < H,

0 otherwise.

(37)

For this classifier, the parameter vector ω is defined to be the
interior intensity of the object and the threshold: {C,H }.

An example of this method applied to an image of the
compliant gripper is shown in Fig. 16(c). The original Canny
edges are shown in Fig. 16(b). It can be seen from Fig. 16(c)
that using the interior intensity of the object to classify edges
does not eliminate all spurious edges (false positives) and
some of edges from the object being tracked are lost. Five
edge normal samples were used.
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Fig. 16 Comparison of edge
detection techniques discussed
in the text. (a) The original
image, (b) Canny edge detection
algorithm, (c) edge detection
example using only object
intensity to classify edges, and
(d) edge detection example
using the neural network edge
classifier

Fig. 17 One of the training images used to train the neural network
edge classifier

6.2.2 Neural Network Classification Method

It was shown above that using the object’s interior intensity
to classify edge candidates leads to false positives and to the
loss of some of the edges from the object being tracked. To
create a more robust classifier algorithm it is necessary to
define a more general classifier than one simply based the
threshold of an error measure. A neural network classifier is
used in order to decrease the number of false positives. The
neural network takes as input the edge normal samples and
outputs a value between 0 and 1. If the output is greater than

0.5, the edge is accepted, otherwise the edge is rejected. The
classifier f becomes

f (S+
i ,S−

i ,ω) =
⎧
⎨

⎩

1 if NeuralNet(S+
i ) > 0.5,

or NeuralNet(S−
i ) > 0.5,

0 otherwise.

(38)

For the neural network edge classifier, the parameter vec-
tor ω represents the weights of the trained neural network
model. The neural network is a standard feed-forward neural
network trained by error back propagation. In order to train
the neural network, training pairs need to be obtained. The
training pairs are obtained from representative images of the
scene. From the training images, the positive and negative
edge normal sample vectors are calculated for all of its edge
pixels. The BEM tracking algorithm described in this paper
is used to determine which edges in the training image corre-
spond with the object of interest. Figure 17 shows the BEM
tracking solution for one of the training images. The edge
normal sample vectors that correspond with the interior of
the object of interest are paired with a neural network out-
put of 1.0, and the normal sample vectors that do not corre-
spond to the interior of the object of interest are paired with
the neural network output of 0.0. These training pairs are
used to train the neural network model. For the results pre-
sented here, the neural network model has 10 hidden nodes,
6180 training pairs were used (2060 sample vectors corre-
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Fig. 18 Effect of edge detection
algorithm on tracking results for
a cluttered scene. (a) The initial
template shape and location for
both methods, (b) the tracking
solution when using the Canny
edge detector, and (c) the
tracking result when using the
neural network edge classifier

sponding to an actual edge and 4120 samples corresponding
to a false edge), and five edge normal samples were used.
Figure 16(d) shows the performance of the neural network
classification scheme applied to a test image (this image was
not used in the training of the neural network). It can be seen
that the neural network edge classifier eliminates almost all
of the spurious edges without losing any of the edges from
the object of interest.

The elimination of spurious edges greatly improves the
robustness of the deformable object tracking algorithm. Fig-
ure 18(c) shows the successful tracking solution for a scene
with a large number of spurious edges. This method for the
suppression of spurious edges does have the drawback of
increased computation time over the standard Canny edge
detection algorithm. For the image shown in Fig. 16(a), the
Canny edge detector takes approximately 0.02 seconds to
process the entire 640 × 480 image. The use of the neural
network edge classifier to suppress the spurious edges adds
approximately 0.75 seconds to the computation time (these
times were obtained using a 2.66 GHz Intel processor).
The edge suppression algorithm spends most of its com-
putation time interpolating the image to obtain the sam-
ple vectors, S+

i and S−
i . The neural network edge classi-

fier could be made to run in real-time by optimizing the
interpolation routine. One option for speeding up the in-
terpolation calculations would be to make use of the image
interpolation functionality built into modern graphics hard-
ware.

7 Performance Analysis

7.1 Quantitative Performance Comparison of Proposed
Algorithms

The performance of the tracking algorithms was evaluated
quantitively in order to measure their robustness to occlu-
sions and spurious edges. Five fiducial marks where placed
on a compliant gripper. These marks were used to measure
the quality of the tracking solution by measuring the error
between the tracking algorithm’s predicted location of the
marks and the actual location of the marks. Table 1 summa-
rizes the results that were obtained. The columns represent
the three different image sequences that were used. The first
set is a control set, the second set introduces occlusion, and
the third set introduces spurious edges (see Figs. 11, 12, and
18, respectively, for example images from each set). Each
algorithm was tested on a series of eight images where the
initial template location was manually set for the first track-
ing frame and the tracking algorithm was used to track from
frame-to-frame for each subsequent frame. The rows indi-
cate the error measure and edge detector used. The table en-
tries show the average error between the template fiducial
marks and the image fiducial marks for all eight images in
the sequence. The errors are measured in pixels.

It can be seen from the table that the performance of
the least squares error measure and Canny edge detector al-
gorithm (LSE-C) is not satisfactory for the occlusion and
spurious edge image sets. For the occlusion image set, the
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Table 1 Quantitive measure of the performance of the algorithms in-
troduced in this article. Error values are measured in pixels

Control Occlusion Spurious Edge

Image Set Image Set Image Set

Least Squares Error

Canny (LSE-C) 1.011 164.690 32.965

Cauchy Error

Canny (CE-C) 1.006 1.067 2.985

Cauchy Error

Canny+Intensity Classifier 1.033 1.158 1.088

(CE-C+IntC)

Cauchy Error

Canny+Neural Network 1.028 1.096 1.065

Classifier (CE-C+NNC)

Fig. 19 Comparison of edge detection techniques applied to a cardiac
MRI image. (a) The original image, (b) Canny edge detection algo-
rithm, (c) edge detection using the intensity based edge classifier, and
(d) edge detection using the neural network edge classifier

Cauchy error measure and Canny edge detector algorithm
(CE-C) has performance that is nearly as good as the LSE-C
algorithm for the control image set. For the spurious edge
image set, the Cauchy error measure with either the inten-
sity edge classifier or the neural network edge classifier (the
CE-C+IntC and CE-C+NNC algorithms) have performance
levels that nearly match the performance of the LSE-C algo-
rithm applied to the control set.

Fig. 20 Comparison of edge detection techniques applied to a cardiac
MRI image with weak edges. (a) The original image, (b) Canny edge
detection algorithm, (c) edge detection using the intensity based edge
classifier, and (d) edge detection using the neural network edge classi-
fier

7.2 Tracking Performance for a Sequence of Cardiac MRI
Images

The methods presented in the paper were also applied to the
tracking of cardiac MRI data.1 Figure 19(a) shows an ex-
ample image from the set. The image plane is oriented so
that it shows the cross section of the left ventricle, which is
the circular chamber on the right side of the image. In this
example, the algorithm presented in the article will be used
to track the muscle wall of the left ventricle throughout its
stroke. By tracking the left ventricle, the volume of the left
ventricle throughout its cycle can be approximated which
in turn can be used to compute the ejection fraction. The
ejection fraction is a measure of the level of cardiac func-
tion.

Figures 19 and 20 show the application of the edge classi-
fier algorithms presented in this article on two different im-
ages. The edges in Fig. 19 are fairly strong and, as a result,
the two edge classifier algorithms have similar performance.
The edges of Fig. 20, in contrast, are relatively weak and
the difference in performance between the two edge clas-
sifier algorithms becomes significant. The neural network
edge classifier algorithms preserves the desired edges that

1The cardiac MRI images used in this paper were provided by Brian
Mullan, M.D., of the Division of Diagnostic Radiology at the Univer-
sity of Iowa.
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Fig. 21 Results of applying the
CE-C+NNC tracking algorithm
to a sequence of cardiac MRI
images

Fig. 22 Comparison of tracking
results for the eighth frame of
the tracking sequence shown in
Fig. 21. (a) Tracking result
using Canny edge detection
algorithm (CE-C), (b) tracking
result using the intensity based
edge classifier (CE-C+IntC),
and (c) tracking result using the
neural network edge classifier
(CE-C+NNC)

are present while most of the undesired edges are rejected.
Even though some of the edges are too weak to be detected
by the Canny edge operator, the use of the Cauchy error
measure allows the tracking to be performed successfully
as will be seen in Fig. 21 (Figs. 19 and 20 are frames 13 and
8 respectively from the tracking sequence in Fig. 21).

Figure 21 shows the boundary element deformable object
tracking algorithm applied to a sequence of cardiac MRI im-
ages. The Cauchy error measure is used in conjection with
the neural network edge classifier (the CE-C+NNC algo-
rithm). The deformable template was manually registered to
the first frame and the tracking algorithm was used to ad-
vance the tracking solution for all subsequent frames. The

neural network edge classifier has 20 hidden nodes and uses
20 edge normal samples to classify edge pixels.

The same sequence of MRI images was also tracked
using just the Canny edge operator (the CE-C algorithm)
and the intensity based edge classifier (the CE-C+IntC al-
gorithm). Figure 22 compares the tracking solution of the
three methods for the eighth frame in the tracking sequence.
For each algorithm, the same initial template placement was
used for the first frame and the respective tracking algorithm
was used to advance the tracking solution for each subse-
quent frame. For the Canny edge operator and the inten-
sity based edge classifier, the template was pulled off of the
true tracking solution by spurious edges. The neural network
edge classifier algorithm provided the best tracking solution
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because it was able to suppress most of the spurious edges
(see Fig. 20 for a comparison of this frame’s edge images as
provided by each edge detection algorithm).

8 Summary and Conclusions

A deformable object tracking algorithm based on the bound-
ary element method and robust to occlusion and to spuri-
ous edges was presented. Since the algorithm uses a physics
based deformation model it is able to more robustly track
elastic objects when compared to a general deformation
model. In addition, a robust error measure was used to
handle the problem of occlusion and a modification of the
Canny edge operator was used to eliminate spurious edges.
The enhanced performance resulting from these modifica-
tions was demonstrated by tracking a compliant gripper and
by tracking a sequence of cardiac MRI images.

Robust deformable tracking is essential for the success-
ful manipulation of deformable objects as is required in the
field of medical robotics or in the field of microrobotics. Ro-
bust deformable object tracking can also be used to provide
force feedback when the material properties of the object
being manipulated are known. Deformable object tracking
provides a means to obtain rich feedback information when
the use of other sensing technologies is limited or impossi-
ble.
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