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Abstract

The manipulation of deformable objects is an important problem in robotics and arises
in many applications including biomanipulation, microassembly, and robotic surgery. In
microrobotics and space robotics the robotic manipulator itself is often deformable. This
dissertation discusses the use of computer vision to provide feedback for robotic interaction
with deformable objects and to provide feedback when the robotic manipulator itself is
deformable. Computer vision is a logical sensing choice for working with deformable
objects because of its wide availability across many fields and the richness of the data
provided by a vision system. A template based deformable object tracking algorithm will
be introduced that can be used to provide force and displacement feedback for robotic
applications. Various material models are used for modeling the template deformation
including the beam equation, the boundary element method, and neural network models.
It is important that the tracking algorithm used for feedback is robust to occlusions and
spurious edges in the source image. Approaches to handle these potential difficulties are
presented. Finally, a compliant four degree of freedom MEMS microgripper is presented.
Because of this gripper’s compliant design, vision tracking can be used to provide position
and force feedback which simplifies its design and fabrication. Vision-based force and
displacement sensing is capable of providing accurate and robust feedback where other
sensing techniques are not possible or are difficult to implement.
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Chapter 1

Introduction

1.1 Robotics and Deformable Objects

Robotic manipulation of rigid objects is well established. Application areas where robots
interact with rigid objects include automated assembly, welding and painting robots, and
mobile robots. Additionaly, the robots themselves are designed to be as rigid as possible.
One primary reason for robots and the objects they manipulate being rigid is that rigid
objects are easier to model than deformable objects. Another reason is that rigid objects
can be characterized by fewer degrees of freedom than deformable objects. The increased
number of degrees of freedom inherent in deformable structures require more sensors to
measure the state of the system. Robots are often able to interact with rigid objects in an
open loop fashion but this is not possible for high dimensionality deformable systems.

There are many compelling applications where robots need to interact with deformable
objects or where the robot itself is required to be deformable. The richest field is medical
robotics where robots must interact with the deformable tissues of the body. There are
also situations where the robot itself must be deformable. One example where deformable
robots are used is in space robotics where the robot is designed to be compliant in order
to conserve weight. Another example where robots are designed to be compliant is in the
MEMS domain where it is common to use compliant mechanisms.

1



1.1.1 Applications Where Robots Must Interact With Deformable Ob-
jects

Medical robots are becoming increasingly important for performing tasks that human op-
erators can not perform or to perform current operations in a less invasive manner. One
of the first areas where medical robots were used was in the area of orthopedics for tasks
such as knee replacements and hip replacements [20] [48]. These applications involve
robots interacting with rigid bones so the established rigid body robotics techniques can
be used directly. Later on, robotic surgery techniques were applied to other surgical areas.
One area where robotic surgery has become more commonplace is in the area of cardiac
surgery. Teleoperated surgery systems such as the ZEUS Surgical System from Computer
Motion Inc. or the da Vinci Surgical System from Intuitive Surgical Inc. have allowed
cardiac surgeons to perform minimumly invasive cardiac operations that would have previ-
ously required open heart surgery [30] [28].

When manipulating deformable objects, more feedback data is required to completely
define the state of the system. The current teleoperated surgery systems increase the feed-
back information available by providing haptic force feedback on the ZEUS system and
stereo visual feedback, in addition to haptic feedback, on the da Vinci system. There has
also been work on performing surgery on a beating heart. Nakamura et al. [34] developed
a system to visually track a heart in order to subtract the heart motion from the motion of
the robot allowing the surgeon to perform the operation as if the heart is stationary. Fu-
ture advances in robotic surgery will require more sophisticated feedback for the state of
deformable objects.

Another area where robots interact with deformable objects is in the area of bioma-
nipulation. A common biomanipulation task is cell injection. Sun et al. [45] developed
a robotic system to autonomously inject mouse egg cells with genetic material for cancer
research. As can be seen from figure 1.1, the cell deforms as the injection pipette enters
the cell. Measuring the deformation of the cell is important for two reasons: the cell can be
damaged if the deformation is too large and the displacements can be used in conjunction
with a force sensor to measure the material property parameters of the cell.

The automated assembly of 1D deformable objects including ropes, cables and tubes
also requires feedback about the state of the deformable object. The high number of de-
grees of freedom that it requires to model such objects makes open loop manipulation very
challenging. Efforts to automatically manipulate such objects include the work of Acker et

2



Figure 1.1: A mouse oocyte cell being robotically injected with DNA material.

al. [1] and Luo et al. [31].
When manipulating deformable objects, feedback information is required to determine

the state of the object. Feedback is also an important mechanism for preventing damage to
the deformable object being manipulated. In order to be able to predict when the damage
will occur, some knowledge of the material model is needed so that the deformations of the
object being manipulated can be related to stresses and forces.

1.1.2 Applications Where the Manipulator Itself is Deformable

Traditionaly robotic manipulators have been designed to be rigid. The advantages of this
approach are that rigid body kinematic models can be used to accurately model the robot
and low frequency resonance modes of the robotic manipulator are avoided which sim-
plifies the control of the manipulator. However, there are situations where a deformable
manipulator cannot be avoided and the deformation of the manipulator must be considered
in order to control it properly.

Space structures are often not rigid because of the severe weight restrictions that space
structures are subject to [6]. Because of this, the deformation of the space structure must
be accounted for during any manipulation task to prevent unwanted vibrations. Currently
Lichter et al. [29] are working on using range images as a feedback mechanism to control
deformable space structures.

At the microdomain, manipulators are often deformable in nature because compliant
joints are often preferable to pin joints. One benefit of compliant joints is that they provide
backlash free motion. Backlash free motion allows for very high precision positioning.
Another benefit of compliant joints is that they are simpler to fabricate using MEMS fab-

3
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Figure 1.2: Three different feedback mechanisms for monitoring the deflection of a can-
tilever beam: (a) laser feedback, (b) strain gauge feedback, and (c) vision feedback.

rication techniques than pin joints. The motion of compliant mechanisms is more compli-
cated to model than that of rigid link mechanisms and requires using material models to
completely define the motion.

1.2 Robotic Sensors for the Determination of State

Feedback for rigid link mechanisms generally involves linear and rotary position sensors
that mirror the prismatic and rotary degrees of freedom of the robotic manipulator respec-
tively. For rigid link mechanisms, these sensors can completely define the state of the
manipulator.

For systems with compliance, different techniques need to be employed to measure
system state. A common sensing technique is to use strain gauges to capture the defor-
mation of the system. When strain gauges can be employed, they provide good feedback
information for a deformable system. Another common approach is to measure the state of
deformable object using an optical approach where a laser is reflected off of a deformable
object to measure deformations. Figures 1.2(a)-(b) illustrate these two approaches to the
measurement of deformation.

There are situations where strain gauges or laser based sensing techniques cannot be
used. One situation occurs when the object that is being manipulated is immersed in a fluid
where the biomanipulation application is an example. In these situations another feedback
approach must be used. The approach that is presented in this dissertation uses vision
feedback to measure the state of a deformable object. The next section will overview the
use of computer vision as a feedback mechanism for deformable objects.
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1.3 Using Computer Vision to Provide Feedback for De-
formable Objects

This dissertation presents a new approach for providing feedback for deformable objects.
A camera image of the deformed object is processed in order to determine its current shape
(see Figure 1.2(c)). From this shape information it will be shown that forces can also be
measured. This approach to feedback for deformable objects is non-contact allowing it to
be used when it is not possible to use contact methods such as strain gauges. The vision
based approach provides feedback for high degree of freedom deformable objects because
of the high dimensional nature of images. For example, it will be shown in Chapter 7 that
the complete stress field of a 2D linearly elastic object can be obtained from the contour
of an object. This entire contour can easily be captured by an image but is challenging to
capture by other methods.

For microrobotic and biomanipulation applications there is usually a camera and micro-
scope included as part of the system to provide visual feedback for the operator. Using the
approach presented here, the images from this camera or microscope can also be processed
by computer to provide displacement and force feedback.

Computer vision provides the high dimensionality information that is needed to track
deformable objects with many degrees of freedom. It will be shown in this dissertation
that computer vision can be used to perform high precision force and displacement mea-
surements for micromanipulation. It will also be shown that these measurements can be
performed in a robust manner that is insensitive to spurious edges in the image or to occlu-
sion of portions of the scene.

1.4 Previous Work in Vision-Based Deformable
Object Tracking

The use of elastic models is well established in computer vision. There are two classes
of methods that are commonly used. One class provides good tracking results for a wide
variety of objects but uses deformation models that are not based on the deformation of
physical solids. This class includes the popular active contour model methods. The second
class of tracking algorithms uses physics based models to track a smaller class of objects
more robustly and to a higher degree of accuracy. The method presented in this dissertation
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builds upon the methods in this second class.

1.4.1 Active Countour Model Based Methods

In 1987 Kass et al. [25] proposed a method to track contours in an image using a 2D
elastic model called an active contour model or a snake. The snake consists of a 2D spline
which has elastic properties and is attracted to edge features within the image. The spline
is matched to the image by the minimization of an error function that has terms for internal
energy, image energy, and constraint energy. The error function as defined by Kass et al. is

Esnake = Einternal + Eimage + Econstraint (1.1)

The internal energy is a measure of the amount of stretching and bending of the spline,
the image energy is a measure of the image intensities and gradient values that the spline
passes through, and the constraint energy allows the user to guide the spline externally.

There are many methods that build upon the active countour model framework. Yuille
et al. [56] used a deformable template matching algorithm to track facial features. Their
splines were defined with degrees of freedom that allowed the splines to take the shape of
facial features.

The active contour family of tracking algorithms are efficient at image segmentation
and tracking general objects. These methods, however, are not the most robust for less
general scenes where there is a priori knowledge about the objects being tracked. For these
situations it is more efficient to use a model-based approach as described in the next section.

1.4.2 Model-Based Methods

Metaxas [33] introduced the use of 3D meshes with physics-based elastic properties to track
both rigid and non-rigid objects. The primary application of his physics based approach
was to track tissues in medical images. The use of physics based models allows for more
robust tracking results than can be obtained by using a general active contour model based
approach. Metaxas’ techniques were used purely for tracking deformable objects and were
not used to measure forces or material properties from images.

Prior work also exists in which elastic models are used to derive force or material prop-
erty information from images. Tsap et al. [50] proposed a method to use nonlinear finite
element modeling (FEM) to track non-rigid objects in order to detect the differences in
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Table 1.1: Objectives.
Objectives
• Measure forces accurately from images
• Perform deformable object tracking that is robust
to image noise and occlusion
• Design the tracking algorithm to be modular
• Design the tracking algorithm to be
computationally efficient

elasticity between normal and abnormal skin. They also discussed how their method could
be used for force recovery. Kaneko et al. [24] presented a tactile sensor that was able to
measure forces visually however their algorithm was limited to wire shaped objects. There
has also been work in force measurements at micro and nano-scales using computer vision.
Wang et al. [51] used Finite Element Modeling (FEM) techniques to derive the forces that
are applied to deformable microparts. Their method is limited by the need to track each
FEM mesh point in the image. Danuser et al. [8] proposed the use of statistical tech-
niques along with deformable templates to track very small displacements. They applied
their technique to the measurement of strain in a microbar under tension. Dong et al. [11]
monitored the tip deflection of an AFM cantilever beam in order to obtain the material
properties of multi-walled carbon nanotubes. The force measurement algorithm presented
here is unique in using contour data alone, therefore, no feature tracking is required, and
the method can be generalized to elastic objects with general geometries.

1.5 Objectives of this Work

The major objectives of this work are listed in Table 1.1. The primary objective is to
demonstrate that forces can be measured by tracking structural deformations in images. In
order for vision-based force measurement to be a substitute for traditional force sensing
technologies, it needs to be shown that forces can be measured to a high level of precision.
The algorithm will be validated using a traditional force sensor to insure the accuracy of
the vision-based approach.

With this work, an additional goal is to increase the robustness of general deformable
object tracking. This will allow the algorithm to be used as a feedback mechanism for the
manipulation of deformable objects where occlusions or image noise may arise without
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warning. The increase in robustness will come from improvements in the material models,
the solver, and the computer vision algorithm.

Algorithms such as active contours tie the model, the solver, and the computer vision
algorithm together. The aim of this project is to provide a tracking method that separates
the material model, the solver, and the low level image processing. This modularity allows
the material model or the image processing algorithm to be swapped out easily, allowing
one to use the overall scheme that is best suited to the problem at hand. As an example, an
edge detection algorithm that is much more robust to spurious edges than the Canny edge
operator will be presented in this dissertation. However, this new edge detection algorithm
is more computationaly expensive than the Canny operator so it should only be used when
it is absolutely needed. The modular design of the overall algorithm allows this switch to
be performed without affecting the other modules of the algorithm.

A final goal is to create an algorithm that is computationally efficient. The goal is
to use these measurements as feedback for micromanipulation so they need to be able to
be executed in real time. The modularity of the algorithm as addressed above makes the
optimization task more straight forward because each of the modules can be optimized
separately outside the framework of the overall algorithm.

1.6 Dissertation Organization

Chapter one provides an overview of the role of deformable objects in robotics and the
current state of the art in vision-based deformable object tracking. A broad overview of the
deformable object tracking algorithm that is presented in this dissertation is described in
Chapter 2. The next three chapters go into the details of each of the major modules of the
algorithm which are the low level vision algorithm presented in Chapter 3, the error min-
imization algorithm in Chapter 4, and the boundary element method deformation model
in Chapter 5. The tracking algorithm is modified for robustness to spurious edges and oc-
clusions in Chapter 6. Chapter 7 presents the method for vision-based force measurement.
An artificial neural network is used to model deformations in Chapter 8 where the neural
network is trained directly from images of a deformed object. Chapter 9 introduces a new
compliant microgripper with four degrees of freedom. This Chapter also introduces a new
bi-directional thermal actuator design. Finally, Chapter 10 summarizes the dissertation.
This final chapter also lists the research contributions of this dissertation.
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Chapter 2

Overview of the Deformable Object
Tracking Algorithm

The applications described in this dissertation, at their most basic level, all involve the
measurement of displacements from images. There are three major approaches that are
typically used to make these measurements: feature tracking, low level pixel analysis, and
template matching.

If a geometric model for the object is available, template matching performs well. In
template matching, a representation of the object, the template, is compared to the image.
The template has a fixed number of degrees of freedom which usually include rotation and
translation. For the applications in this dissertation, the template will also have deformation
degrees of freedom. The goal of template matching is to find the set of parameters that
minimize the error between the template and the image. The characteristics that define
a template matching algorithm are the error measure used, the definition of the degrees
of freedom, and the numerical minimization algorithm used. The algorithm presented in
this dissertation separates these components into distinct modules. Figure 2.1 lists these
modules. These modules will be discussed in the remainder of this chapter.

2.1 Measuring the Error Between the Template and the
Image

It was mentioned that an error measure is minimized between the template and the image.
The error measure will now be defined. The image will first be preprocessed to reduce the
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Figure 2.1: The three modules of the deformable object tracking algorithm presented in
this dissertation.

image data to a manageable level and then the error will be measured using a least squares
error measure.

2.1.1 Image Preprocessing

Images contain a large amount of data which makes it desirable to reduce the amount of
data without losing the information that is to be extracted from the image. The process of
decreasing the amount of data in an image without losing the essential information is called
image preprocessing. Common preprocessing algorithms include segmentation, despeck-
ling, and edge detection. Edge detection will be used here to eliminate unneeded data while
preserving the edge displacements which contain most of the information in the image.

There are multiple edge detection algorithms available. The Canny edge detection al-
gorithm [5] will be used. The Canny edge detector takes a gray-scale image as input and
outputs a binary edge image with each edge represented as a white pixel and all other pixels
set to black. The Canny edge operator is chosen because of its ability to preserve continu-
ous edges within an image. Figure 2.2 shows the results of the Canny edge operator applied
to an image. Edge detection will be discussed in detail in the next chapter.

2.1.2 The Least Squares Error Measure

The deformable template is registered to a binary edge image using a least square error
measure. The template is represented by a list of 2D vertices ri and the edge pixels in the
current image are represented by the list of 2D vertices wi. The registration algorithm min-
imizes the distance squared between the transformed template vertices r′i and the nearest
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Figure 2.2: Original image on left and Canny edge image on right.

image edge vertices wi where the template vertices are transformed by a template transfor-
mation T with degrees of freedom represented by the vector x.

r′i = T (ri,x) (2.1)

The error between the transformed template vertices r′i and the image vertices wi is
defined by the following function

E(x) =
M
∑

i=1

‖r′i − wi‖
2 (2.2)

where r′i is the position vector of the ith edge pixel of the template transformed by (2.1);
wi is the position vector of the edge pixel in the image that is closest to the point r′i; and
M is the number of edge pixels in the template. This error function sums the square of the
distance between each template vertex and the nearest image edge pixel. Figure 2.3 shows
an example of calculating this error with a simple template and a simple edge image. Since
the transformed template vertices r′i are transformed by the template transform T , E will
be a function of the transformation’s degrees of freedom x. By minimizing E, the values
of x that best match in the image in a least squares sense will be found.

2.2 The Template Degrees of Freedom

Now the degrees of freedom of the template will be defined. The degrees of freedom will
consist of a rigid body motion contribution and a deformable body contribution. The rigid

11



d1

d10

d2

d9

d8d3

d4

d7

d6

d5

Image Vertices

Template Vertices

1

2

3

4

5

6

78

9

10

r’
r’

r’ r’

r’

r’

r’

r’

r’r’

Figure 2.3: Example of measuring error between a template and an image where di is the
distance from the template vertex r′i to the nearest image vertex. The error in this example
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body component will be an affine transformation and the deformable body component will
be based on elasticity theory.

2.2.1 The Rigid Body Motion Degrees of Freedom

The rigid body portion of the transformation is simply an affine transform. For the rigid
body case the template transform is defined as

r′ = T (r, θ,X) = A(r) = X +





cos θ − sin θ

sin θ cos θ



 r (2.3)

where θ is the angle of rotation and X is the translation vector. In this dissertation, the
affine transform is occasionaly referred to as A(r). Figure 2.4 shows how these parameters
are defined. The error function between the transformed template vertices r′i and the image
vertices wi can be written as

E(θ,X) =
M
∑

i=1

‖r′i − wi‖
2 (2.4)
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Figure 2.4: Rigid body template degrees of freedom.

Table 2.1: Various methods for modelling the deformations of materials.
Deformable Material Modelling Techniques
• Analytical solutions such as the beam equation
• Boundary element model (BEM)
• Finite element model (FEM)
• Neural network model

2.2.2 The Deformation Degrees of Freedom

Since all of the applications presented in this dissertation involve deformable objects, a
template with only rigid body motion degrees of freedom is not sufficient. It is necessary to
add non-rigid motion degrees of freedom to the template. Various methods will be used to
model this deformation throughout this dissertation, but in all cases the degrees of freedom
will be forces applied to the boundary of the object. The deformation model will return
the displacement of each point within the object given these applied forces. Table 2.1 lists
several available methods to model deformable objects. Analytical, boundary element, and
neural network models will be presented in this dissertation.

Deformations will be expressed in general by the following equation

u = D(r, {t}) (2.5)

where D is the deformation model and {t} is the traction distribution applied to the object.
Using the above equation, the template transformation T can be redefined as
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r′ = T (r, θ,X, {t}) = X +





cos θ − sin θ

sin θ cos θ



 (r + u) (2.6)

where each template vertex r is translated by the vector u obtained using (2.5) before apply-
ing the affine transformation. Since u is a function of {t}, the new template transformation
T is now a function of the applied traction {t} in addition to the affine transformation
parameters, θ and X. The resulting error function is

E(θ,X, {t}) =
M
∑

i=1

‖r′i − wi‖
2 (2.7)

2.3 Minimizing the Error Function

The error function (2.4) is minimized by a gradient-based multi-variable minimization
technique called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [13]. The BFGS
method is a gradient based minimization technique, and differs from the steepest decent
method in that it uses information from previous iterations in the choice of a new search
direction giving it faster convergence rates. BFGS uses information from previous itera-
tions to approximate the Hessian matrix giving it convergence rates similar to second-order
minimization techniques without the overhead of computing a second derivative.

2.4 Extending the Template Matching Algorithm
to Three Dimensions

The template matching algorithm described above was defined for two dimensional objects.
For example, (2.3) defines a two dimensional affine transformation. For some applications,
tracking in three dimensions is required. For these situations, the template matching algo-
rithm can be easily extended to three dimensions. The affine transformation (2.3) needs
to be changed to a three dimensional affine transformation with one additional translation
degree of freedom and two additional rotational degrees of freedom. The deformation
function (2.5) also needs to be updated to a model that supports three dimensions.

Once the three dimensional template is defined, it is necessary to obtain the three di-
mensional image data. There are two ways to obtain this data. The first is to use multiple
camera angles. The second method is to use an imaging technology that is able to obtain

14



three dimensional data directly such as laser range finders. Medical imaging techniques
such as magnetic resonance imaging (MRI) often provide three dimensional information
directly as stacks of images.

15



Chapter 3

Low Level Image Processing

All computer vision techniques at some point need to manipulate individual image pixels.
This chapter discusses the low level image processing techniques that are used for the
approach presented in this dissertation. The techniques presented in this chapter are widely
used in the field of computer vision. Chapter 6 introduces a new low level image processing
algorithm that builds upon the algorithms presented here.

3.1 Image Convolution

Convolution is frequently used to filter image data. To perform convolution, a convolution
kernel needs to be defined. The convolution kernel is a two dimensional array that generally
has a size that is much smaller than that of the image. The equation for image convolution
is

G(i, j) = I(i, j) � K(i, j) =
m
∑

k=1

n
∑

l=1

I(i + k − 1, j + l − 1)K(k, l) (3.1)

where I is the source image of size MxN and K is the convolution kernel of size mxn.
Table 3.1 shows a symbolic representation of an image and Table 3.2 shows a symbolic
representation of a convolution kernel.

There are many convolution kernels that are commonly employed in computer vision.
There are kernels that perform image smoothing (low pass filters) and those that enhance
edges (high pass filters). An example of a smoothing kernel is the mean kernel which
computes the mean value of the local image pixels (see Table 3.3 for an example of a 3x3
mean kernel).

16



Table 3.1: Image pixels.
I11 I12 I13 · · · I1N

I21 I22 I23

I31 I32 I33
... . . .

IM1 IMN

Table 3.2: General convolution kernel.
K11 K12 K13 · · · K1n

K21 K22 K23

K31 K32 K33
... . . .

Km1 Kmn

Table 3.3: Mean kernel.
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9
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Table 3.4: Gaussian blur kernel.
0.60653 0.77880 0.60653
0.77880 1.00000 0.77880
0.60653 0.77880 0.60653

Figure 3.1: Original image on left and Gaussian smoothed image on right.

A more commonly used kernel for smoothing an image is the kernel which obtains its
values from the shape of the Gaussian function. The two-dimensional zero-mean discrete
Gaussian function is [23]

G(i, j) = e−
i2+j2

2σ2 (3.2)

where σ determines the width of the Gaussian. For a 3x3 kernel with σ2 = 2, the Gaussian
kernel is given in Table 3.4. An image smoothed by this kernel is shown in Figure 3.1.

The next section introduces the high pass filter Sobel kernels that are used to enhance
the edges in the source image.

3.2 Locating Edges in Images

Edges in images correspond to areas in the image where the intensity changes rapidly. All
edge detection algorithms apply a high pass filter to the image to enhance edges. Edge
detection is frequently used as the first step in image processing because it greatly reduces
the amount of data storage required for an image while preserving most of the information
available. For the task of deformable object tracking, edges provide all of the information
that is necessary. It will be shown in the chaptor on vision-based force measurement that
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Figure 3.2: The top curve is the functional representation of a one dimensional edge. The
bottom two curves show the first and second derivatives of that function.

for linearly elastic objects, the edge of the object completely defines the elastic state of the
object.

Figure 3.2 shows a one dimensional function f(x) with an intensity change that rep-
resents an edge. The first and second derivatives of this function are also shown in this
figure. The first derivative can be used to locate edges by searching for the local maxima
and the second derivative can be used to locate edges by locating zero crossings. In prac-
tice, the first derivative is generally used because the second derivative has a higher noise
level in the resulting edge image when compared to the edge image obtained using the first
derivative.

Since images represent discrete samples from a two dimensional function, the image
gradient will be used as a measure of edge intensity. Specifically, the magnitude of the
image gradient will be used which can be computed directly using

|∇I(x, y)| =

√

√

√

√

∂I(x, y)

∂x

2

+
∂I(x, y)

∂y

2

(3.3)

In practice, the image gradient is calculated using a convolution kernel. A common kernel
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Table 3.5: x Sobel kernel.
-1 0 +1
-2 0 +2
-1 0 +1

Table 3.6: y Sobel kernel.
+1 +2 +1
0 0 0
-1 -2 -1

for edge detection is the Sobel kernel which calculates the first derivative in the x and y

directions using separate kernels. These kernels are shown in Tables 3.5 - 3.6 respectively
[23]. Figures 3.3(b) and (c) show the results of applying the x and y sobel kernels to the
source image shown in Figure 3.3(a) (note that the absolute value of the convolution result
G(i, j) is shown in the figures).

The magnitude of gradient is calculated from the results of the Sobel operator using

|G(i, j)Sobel| =
√

Gx(i, j)2 + Gy(i, j)2 (3.4)

where Gx(i, j) and Gy(i, j) represent the results of the x and y Sobel convolutions respec-
tively. The square root calculation is usually removed in order to make the calculation more
efficient. The resulting approximate to the magnitude of gradient is

|G(i, j)Sobel| = |Gx(i, j)| + |Gy(i, j)| (3.5)

The angle of the edge can be calculating using:

θ(i, j) = tan−1

(

Gy(i, j)

Gx(i, j)

)

(3.6)

A thresholding technique is used to detect edges based on the approximation of the
magnitude of gradient (3.5). If the magnitude of gradient is greater then a threshold value
than the pixel is set to an edge. Figure 3.3(d) shows the final binary edge image obtained by
thresholding the magnitude of the gradient obtained using the Sobel convolution kernels.
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(a) (b)

(c) (d)

(e)

Figure 3.3: (a) Original image, (b) Sobel operator in x direction, (c) Sobel operator in y
direction, (d) threshold based Sobel edge detector, and (e) Canny edge detector.
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3.3 The Canny Edge Operator

The Canny edge operator is an improvement upon the threshold-based Sobel edge detec-
tion method and was designed with the goal of obtaining an optimal edge detector. The
Canny edge operator is a multi-step algorithm with one of the steps including the use of
the Sobel operator to calculated the magnitude of the image gradient. Because of its in-
creased complexity, the Canny edge operator does take more computation time than the
Sobel edge operator. However, this complexity is justified by the results obtained and mod-
ern computer hardware can compute the Canny edge operator very quickly. The Canny
edge operator’s unique features include its ability to preserve continuous edges through the
use of dual threshold values and the thinning of edges to a thickness of one pixel by only
preserving the local maximum edge through the use of the edge angle information. The
steps to perform the Canny edge detection are [23]:

1. Smooth the image using a Gaussian convolution kernel.

2. Calculate the magnitude of the image gradient and the edge normal direction using
(3.5) and (3.6) respectively.

3. Suppress the nonmaxima gradient magnitude values.

4. Link continuous edges by using two threshold values.

The first step of the Canny edge operator is to blur the image slightly by convolving the
image with a Gaussion kernel. This step is done to minimize the noise that is amplified by
the application of the Sobel edge operators used to calculate the image gradient. The next
step is to apply the Sobel operator in both the x and y directions using the Sobel kernels
presented in the previous section. Equation (3.5) is used to approximate the magnitude of
the gradient and (3.6) is used to calculate the angle of the edge.

Each edge pixel is assigned to one of four sectors based on the edge angle. The four
sectors are shown in Figure 3.4. The edge candidate is assigned to the sector to which its
edge normal lies. These sectors are used to perform the non-maxima suppression which
eliminates edge pixels that are not the maximum for the edge in question. Each pixel
magnitude of gradient is compared to each of its neighbors in the same sector. The pixel
that is the maximum is kept and the magnitude of the others is set to zero. The nonmaxima
suppression step helps to insure that edges are only one pixel wide.
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Figure 3.4: Diagram representing the four possible Canny edge directions.

Finally, edge thresholding by a hysteresis technique is preformed. Unlike the Sobel
edge operator, the Canny edge operator uses two threshold values instead of one. If the
magnitude of gradient of an edge is greater than the larger of the two thresholds, the edge is
automatically accepted. If the magnitude of gradient is below the lower threshold, the edge
is automatically rejected. Edges between the two threshold values are accepted if they form
part of a continuous chain of edges and rejected otherwise. This hysteresis technique helps
the Canny edge operator preserve continuous edges in images even if the edge is weak at
points.

Figures 3.3(d)-(e) compare the Sobel and Canny edge operators for the same source
image. It can be seen that the Canny operator not only reduces the noise level in the
resultant edge image, but it also helps to prevent breaks from forming in continuous edges.
The local nonmaxima filtering also helps insure that the Canny edges are only one pixel
wide. Compare this characteristic to the Sobel edges which are often many pixels wide. The
canny edge operator will form the starting point for all of the image processing algorithms
presented in this dissertation.
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Chapter 4

Minimization of the Error Function

After the edge detection algorithm and the appropriate deformation model are implemented
the final module to implement is the module to minimize the error function. The error
function module is used to minimize (2.7). This chapter will present the algorithm used to
minimize this error function.

The goal of the minimization algorithm is to find the xmin that minimizes the error
function

E(xi) =
M
∑

j=1

∥

∥

∥r′j − wj

∥

∥

∥

2
(4.1)

where

xi ≡











θi

Xi

{t}i











(4.2)

and x0 is the initial guess for the solution of the minimization problem.

4.1 Approaches to Function Minimization

There are numerous approaches to the numerical minimization of functions. In general, if
the error function to be minimized has a first derivative, the gradient descent based methods
have the best convergence performance. For gradient based methods, the solution x is
incremented by
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xi+1 = xi + αSi (4.3)

where Si is the search direction for the ith iteration and α is a scalar indicating the distance
to increment in the direction Si. The value is α is determined using a line search algorithm
which will be discussed below. For the steepest decent algorithm Si is given by

Si = −5 E (xi) (4.4)

The value for α is usually computed using a one-dimensional search algorithm such as
Newton’s method.

4.2 The BFGS Minimization Algorithm

The BFGS method is a variable metric method and as such it uses information from previ-
ous information when it updates the search direction Si. Because of this, variable metric
methods converge faster then a simple steepest descent search.

4.2.1 Calculation of Search Direction

The BFGS method uses the following equation to obtain the search direction for each iter-
ation [13]

Si = −Hi 5 E (xi) (4.5)

where Hi is calculated by the following equation

Hi = Hi−1 + Di (4.6)

Di is called the symmetric update matrix and it is defined by the following equation

Di =
σ + τ

σ2
ppT −

1

σ

[

Hi−1ypT + p (Hi−1y)T
]

(4.7)

where p, y, σ, and τ are calculated by the following equations

p = xi − xi−1 (4.8)
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y = 5E(xi) −5E(xi−1) (4.9)

σ = p · y (4.10)

τ = yTHi−1y (4.11)

Hi is an approximation to the inverse Hessian matrix which allows the BFGS method to
have convergence properties very similar to second order minimization methods. Methods
that approximate the Hessian matrix are called quasi-Newton methods.

4.2.2 The Line Search

A line search algorithm is used to determine the α value used in (4.3). The choice of line
search algorithm is very important to the performance of the gradient search method. There
are many possible line searches that can be used including Newton’s method and the golden
section method. When using one of these methods, α is often chosen so that xi+1 in (4.3)
gives the minimum error function value. When using quasi-Newton methods this may not
be the best approach because it may actually slow down the convergence of the algorithm
and require an unnecessary number of error function evaluations in order to perform the
line search. For this reason, the backtracking algorithm is used to solve for α [10]. The
back-tracking line search algorithm initially attempts α = 1 and uses α = 1 if the error
function is decreased sufficiently. If the error function is not decreased sufficiently, α is
decreased or ”backtracked” until a value of α is found that sufficiently decreases the error
function. Quadratic interpolation of the error function along the search vector is used for
the first backtrack and cubic interpolation is used for subsequent backtracking. The use
of the backtracking line search algorithm helps to dramatically reduce the number of error
function evaluations.
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4.3 Calculating the Analytical Gradient of the
Error Function

In order to execute the BFGS method, the gradient of the error function must be calculated
in order to obtain the new search direction for each iteration (see (4.5)). The gradient
can be calculated numerically or explicitly. This section will point out the drawbacks of
calculating the gradient numerically and will show how to compute the explicit gradient in
such a way that allows the deformation model or the error measure to be changed without
having to rewrite the entire explicit gradient formula.

The gradient of E is defined as

5E(x) =

















∂E
∂x(1)
∂E

∂x(2)
...

∂E
∂x(n)

















(4.12)

where E is a function of n variables.

4.3.1 Numerical Calculation of Gradient

As can be seen from (4.12), the calculation of the gradient of E requires the computation
of each of the partial derivatives. Each of these partial derivatives can be approximation by
the following symmetrical finite difference equation
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/ (2h) (4.13)

where h is chosen to be small. The optimal value of h depends on the machine precision
of the variables (see [37] for guidelines for choosing an optimal value for h). Note that the
calculation of the gradient will require 2n evaluations of the function E since two function
evaluations are required for each of the n partial derivatives.

There are two major drawbacks to this approach of computing the error function gradi-
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ent. The first drawback is that this calculation is an approximation to the gradient. Because
of this, it will affect the convergence characteristics of the BFGS algorithm. The second
drawback, and the more serious drawback for the deformable object tracking application,
is that the approximation to the gradient requires 2n evaluations of the error function. This
large number of functional evaluations will limit the achievable performance of the de-
formable object tracking algorithm especially for templates with a large number of degrees
of freedom or for templates with deformation models that are computationally expensive
to evaluate.

Even with the limitations of the numerical approximation to the gradient it is very useful
for an initial run at minimizing an error function because defining the gradient of the error
function explicitly is time consuming. The numerical approximation to the gradient also
provides a good method for checking the accuracy of the explicit gradient since the explicit
expressions for the gradient of the error function are generally complex and prone to error.

4.3.2 Explicit Calculation of Gradient

As pointed out in the previous section, the explicit computation of the gradient is both more
accurate and more efficient than computing it numerically. The downside of computing the
gradient explicitly is that the explicit form can be complex because it depends on the defor-
mation model used, the error measure used, and the affine transformation of the template.
This can be seen by reviewing how the error function is calculated. The error function is

E(x) =
M
∑

j=1

ρ(d) (4.14)

where d is the distance between the jth template pixel and the nearest image pixel and is
defined as d ≡

∥

∥

∥r′j − wj

∥

∥

∥, ρ is the error measure being used, and x is defined as

x ≡











θ

X

{t}











(4.15)

Recall that the wj values are constants that represent edge vertices in the current image.
The r′j values represent the deformed pixel locations and are calculated using

r′j = X +





cos(θ) −sin(θ)

sin(θ) cos(θ)



 (rj + u) (4.16)
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where rj is the undeformed template location and u is computed using

u = D (rj, {t}) (4.17)

where D is the deformation model.
From the above equations, the gradient can be explicitly calculated. The chain rule will

be used so the explicit gradient can be easily updated if the functions ρ or D are changed.
The explicit gradient is

∂E(x)

∂x(i)
=

M
∑

j=1

(

∂ρ(d)

∂d

(

∂d

∂r′jx

∂r′jx
∂x(i)

+
∂d

∂r′jy

∂r′jy
∂x(i)

))

(4.18)

where the partial of d with respect to the x component of rj is

∂d

∂r′jx
=

r′jx − wjx
∥

∥

∥r′j − wj

∥

∥

∥

(4.19)

and similarly, the partial with respect to the y component is

∂d

∂r′jy
=

r′jy − wjy
∥

∥

∥r′j − wj

∥

∥

∥

(4.20)

Finally, the partials of r′jx and r′jy with respect to the degrees of freedom are computed.
The partials with respect to θ are

∂r′jx
∂θ

= −sin(θ)(r′jx + ux) − cos(θ)(r′jy + uy) (4.21)

and
∂r′jy
∂θ

= cos(θ)(r′jx + ux) − sin(θ)(r′jy + uy) (4.22)

The partials with respect to the components of X are

∂r′jx
∂X1

= 1 (4.23)

∂r′jy
∂X1

= 0 (4.24)

∂r′jx
∂X2

= 0 (4.25)
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∂r′jy
∂X2

= 1 (4.26)

The partial of r′j with respect to the kth traction degree of freedom {tk} is

∂r′jx
∂{tk}

= cos(θ)
∂Dx

∂{tk}
− sin(θ)

∂Dy

∂{tk}
(4.27)

and
∂r′jy
∂{tk}

= sin(θ)
∂Dx

∂{tk}
+ cos(θ)

∂Dy

∂{tk}
(4.28)

Using the above equations, the gradient of the error function can be calculated explicitly
which efficiently provides an accurate derivative when compared to the derivative obtained
using the numerical gradient approximation. Also, if the error measure ρ is changed or the
deformation model D is changed, the explicitly gradient can be easily updated by substi-
tuting the new value for ∂ρ

∂d
into (4.18) or the new values for the partials of D into (4.27)

and (4.28).

4.4 Optimizing the Calculation of the Error Function

An efficient minimization algorithm has been presented in this section. Even with an ef-
ficient minimization algorithm, the efficiency of the overall minimization problem is still
limited by the computation time required to evaluate the error function itself. This sec-
tion presents approaches to minimize the computation time needed to evaluate the error
function.

4.4.1 The KD-Tree Datastructure

The solution of the error function (2.7) requires a nearest neighbor search for each template
pixel in order to find the nearest image edge pixel. This nearest-neighbor search performed
for each template pixel is where the tracking algorithm presented in this dissertation spends
most of its computation time. In the simplest solution to the nearest-neighbor search, one
simply calculates the distance to every image vertex and selects the image vertex with the
shortest distance. This algorithm works but makes no use of the spatial structure that exists
within the image pixels. If the image vertex data is organized in a spatial data structure, the
nearest image pixel can be found without having to measure the distance to every image
pixel. The data structure employed to organize the pixel data is the KD-Tree [41].
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A two dimensional KD-Tree is a binary tree data structure where each node corresponds
to a data point. Each new node partitions the data space by either a vertical line or a
horizontal line. Figure 4.1 shows a set of points that are partitioned into a KD-Tree. A
KD-Tree can be used to find the nearest image vertex with O(logN) operations as opposed
to O(N) operations needed to find the nearest pixel without using a spatial data structure
(where N is the number of vertex points in the image).

The order in which data points are added to the tree is important for achieving the
O(logN) performance. In order to achieve the O(logN) performance, the KD-Tree must
be balanced. However, there is a computational cost to building a balanced tree that must
be considered when choosing the best method to construct the KD-Tree. The time required
to create the KD-Tree becomes important because for every new image frame that is read in
from the camera, a new KD-Tree must be constructed. The order the data points are added
to the KD-Tree determines how balanced the final KD-Tree will be. Three approaches
were implemented for adding the points to the KD-Tree: the no-preprocessing approach
where the data points are added in the same order that they are received from the camera
(an example of such a tree is shown in Figure 4.2), the balanced approach where the data
points are ordered so that a balanced tree is created (see Figure 4.1), and the randomized
approach where the points are placed in random order before they are added to the tree.

The results for the three methods of adding nodes to the KD-Tree are summarized in
Table 4.1. The table shows the total time for tree creation and error function minimization.
It is desireable to use the algorithm with the lowest total time. It can be seen from this data
that the balanced tree is the most efficient for the nearest neighbor searches since it has
the fastest minimization time, however, it takes the longest time to create. The tree with
no preprocessing can be created very quickly but it has slow minimization performance.
The random insertion order algorithm provides the lowest total time even though it doesn’t
provide the lowest minimization times. The reason that the no preprocessing algorithm
performs so poorly is because the data is coming from image scan lines so consecutive data
points placed into the KD-Tree will have come from nearly the same location on the image
(see Figure 4.2). This will lead to a tree that is very poorly balanced and little advantage
will be gained by using the data structure. Randomizing the order of the data entered into
the KD-Tree leads to a balanced tree without the computation cost required to generate an
optimal tree.
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Figure 4.1: Partitioned data on left and KD-Tree on right for data that was added to tree in
optimal order to create a balanced tree.

Figure 4.2: Partitioned data on left and KD-Tree on right for data that was added to tree in
scan line order.

Table 4.1: Comparison of KD-Tree construction algorithms.
Random Balanced No Preprocessing

Average Tree Creation Time (sec) 0.0082 0.0305 0.0033
Average Minimization Time (sec) 0.1217 0.1129 0.1897

Total Time (sec) 0.1299 0.1434 0.1930
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4.4.2 Under-Sampled Template

The error function can be evaluated more quickly if the number of template pixels is re-
duced. This reduces the number of nearest neighbor searches that need to be performed.
To reduce the number of template pixels, a certain percentage of pixels are removed ran-
domly from the template. Figure 4.3 shows a cantilever template with all of the edge pixels
along with an under-sampled template retaining ten percent of its original edge pixels (see
Section 7.3 for a discussion of this template and the associated tracking problem). Figure
4.4 shows the average time for force calculation versus the percentage of template pixels
that are retained. It can be seen from this plot that there is a linear relationship between the
percent of template pixels and the speed of the algorithm. A linear relationship is expected
because each nearest neighbor search takes approximately the same amount of time, so if
there are half the number of nearest neighbor searches the time to perform the minimization
should be cut in half. Also, it can be seen from the plot that the y-intercept of the line is not
zero. This non-zero intersect is due to the time that is required to construct the KD-Tree
before the nearest neighbor search actually begins (the time to perform the Canny edge
operator was not included in the results). By reducing the number of template pixels, the
time per iteration can be reduced significantly. In this case with 100 percent of the template
pixels the average iteration time was approximately 0.12 sec while with 20 percent of the
template pixels the average iteration time was reduced to 0.037

Reducing the number of template pixels, however, is not without drawbacks. By having
less data points in (2.7), it would be expected that the accuracy of the force result obtained
would be decreased. Figure 4.5 summarizes this by showing the cantilever deflection con-
fidence intervals versus the percentage of template pixels retained. It can be seen that the
confidence intervals become larger when fewer pixels are used in the template. Below 20
percent of pixels, the confidence intervals begin to grow more dramatically. Even when
only one percent of the template pixels are retained (such a template would consist of
approximately nine pixels where the original template consisted of 920 pixels) sub-pixel
deflection confidence intervals of 0.4 m are still achieved (the pixel size is approximately
1 m). When determining the percentage of template pixels to use in a particular tracking
problem it is important to balance the needs of accuracy and that of fast calculations.
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Figure 4.3: Full template from edge pixels of image on top and under-sampled template on
bottom retaining only 10% of the original edge pixels.

Figure 4.4: Under-sampled template performance.
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Figure 4.5: Under-sampled template effect on system accuracy.

4.4.3 Potential for Parallization Using Multiple Processors

Performance improvements similar to those achieved by decreasing the number of template
pixels can be achieved by making use of multiple processors rather than removing template
pixels. This can be done by separating the evaluation of the error function (2.7) into a series
of partial sums where the number of partial sums is the same as the number of processors
that are available. Each processor then evaluates its own partial sum and returns the result
to the main processor. This method has the potential provide performance benefits similar
to those provided by the under-sampled template. For example, if two processors are used
the performance should be similar to the performance of the under-sampled template with
50 percent of the original pixels (ignoring the communication cost between processors).
With multiple processors, the performance improvements come without the cost of de-
creased accuracy because all of the template pixels are retained. Even further performance
enhancements could be obtained by combining the use of multiple processors with the use
of an under-sampled template.
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Chapter 5

A Deformable Object Tracking
Implementation Using the Boundary
Element Method1

This chapter brings together the concepts of the previous chapters and presents a complete
deformable object tracking algorithm. The boundary element method (BEM) is used to
model the deformations of the template. The implementation of the algorithm is discussed
and the tracking results are also presented.

5.1 Introduction

Deformable object tracking has many important applications. Application areas include
medical imaging [33][32], robotic manipulation of deformable objects [34][45], and vision-
based force measurement [16][51]. For robust deformable object tracking, it is essential
that the tracking algorithm has some knowledge about the behavior of deformable objects.
Algorithms without inherit material models, such as active contour models [25], can per-
form a wide variety of tracking tasks but their generality sacrifices robustness when used
for tracking deformable objects.

Existing model based tracking algorithms have used the finite element method (FEM)
to model material deformations [33][50]. BEM, like FEM, is a method to model an elastic

1 c©2004 IEEE. Reprinted, with permission, from ”Boundary element deformable object tracking with
equilibrium constraints,” Greminger, M.A., Sun, Y., Nelson, B.J., IEEE International Conference on Robotics
and Automation, 2004.

36



Figure 5.1: Comparison between 2D boundary element and finite element meshes.

object. BEM differs from FEM in the way the object is meshed. BEM only requires the
boundary of the object to be meshed while FEM requires the interior and the boundary of
the object to be meshed. Figure 5.1 shows a microgripper with an FEM mesh on the top
jaw and a BEM mesh on the bottom jaw. The boundary mesh property of BEM makes it
uniquely suited to computer vision problems because edge detection can be used to easily
locate the boundary of an object. An even more important benefit of a BEM mesh is that it
can readily handle large deformations without the need for mesh refinement. The elements
of FEM meshes may become ill-conditioned or turn inside-out if they experience a large
deformation.

This chapter is organized as follows: Section 5.2 presents the boundary element method
and the method used to numerically solve the Neumann Problem. The actual deformable
template matching algorithm that makes use of the solution to the Neumann problem is
presented in Section 5.3. Section 5.4 presents tracking results for the deformable object
tracking algorithm. Strain energy regularization is presented in Section 5.5 and includes
tracking results which make use of this technique. Finally, a summary and concluding
comments are presented in Section 5.6.

5.2 The Boundary Element Method

The boundary element method is a technique to solve partial differential equations by re-
formulating the original PDE into an integral equation over the boundary of an object. The
solution to this boundary integral equation (BIE) is the solution to the original PDE. Be-
cause the integral equations are over the boundary of the object, only the boundary of the
object needs to be partitioned.
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The linearly elastic 2D plane stress model will be used to model the deformation of the
deformable template. The PDE for the 2D plane stress elasticity problem can be expressed
in terms of displacements uα(x) by [43]

µ∇2uα + µ
(

1 + ν

1 − ν

)

∂

∂xα

(

∂u1

∂x1

+
∂u2

∂x2

)

+ Fα = 0 (5.1)

where α = 1, 2. Fα(x) is a body force applied to the object, such as gravity or a force due
to acceleration. This equation is known as Navier’s equation of plane stress and is defined
over a 2D domain R with a boundary ∂R. The shear modulus µ and Poisson’s ratio ν

completely define the material properties of an isotropic linearly elastic object. The shear
modulus can be expressed in terms of the modulus of elasticity E by the following equation

µ =
E

2(1 + ν)

The boundary conditions for (5.1) can be expressed as a prescribed displacement vector
over the boundary ∂R. This is known as the Dirichlet problem. The boundary condition
can alternatively be expressed as a prescribed traction vector over the boundary where, in
2D, the traction vector has the units of force per length. This is known as the Neumann
problem.

In order to convert Navier’s equation (5.1) into a boundary integral equation, it is first
necessary to obtain the fundamental solutions for (5.1). The fundamental solutions can
then be used to construct the boundary integral equation.

5.2.1 Fundamental Solutions

The fundamental solutions for the plane stress elasticity problem are the solutions to (5.1)
for a point load F of unit magnitude applied to a point p in an infinite 2D medium of
unit thickness. The fundamental solutions are sometimes referred to as Kelvin solutions,
Green’s functions, or singular solutions. The displacement of a point q in an infinite
medium with a unit load applied at p is known as the displacement fundamental solution
and is given by [2]

Ulk(p, q) = C1

[

C2 ln
1

r
δlk +

(pl − ql)(pk − qk)

r2

]

(5.2)
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where

r =
[

(p1 − q1)
2 + (p2 − q2)

2
]

1

2

C1 =
1

8πµ(1 − ν)

C2 = 3 − 4ν

and l, k = 1, 2. Ulk corresponds to the displacement of the point q in the kth direction
due to a unit load in the lth direction. The displacement fundamental solution is shown
graphically in Figure 5.2 for the unit load F = (1, 0).

There is also a fundamental solution that gives the traction at a point q in an infinite
medium due to a unit load at p. The traction vector must be defined in reference to a line l

that cuts through the material. The traction vector is the force distribution that would need
to be applied to the object in order to maintain the same state of stress if it were to be cut
by the line l. The traction fundamental solution can be written as

Tlk(p, q) =
C3

r

[

∂r

∂n

(

C4δlk + 2
(pl − ql)(pk − qk)

r2

)

+ C4

(

nl(pk − qk)

r
−

nk(pl − ql)

r

)]

(5.3)

where

∂r

∂n
=

n1(p1 − q1)

r
−

n2(p2 − q2)

r

C3 =
1

4π(1 − ν)

C4 = 1 − 2ν

and nl is the outward normal vector to the line l at the point q. The traction fundamental
solution is shown graphically in Figure 5.2 for the unit load F = (1, 0). Note that the
fundamental solutions are singular when p = q.

5.2.2 Boundary Integral Equations

The fundamental solutions (5.2) and (5.3) are used to construct the boundary integral equa-
tions for the elasticity problem (5.1). The integral equation that relates interior displace-
ments to boundary displacements and boundary tractions is known as Somigliana’s identity
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Figure 5.2: Displacement fundamental solution on top and traction fundamental solution
on bottom.

and is as follows [40]

ui(p) =
∫

∂R

[Uij(p, q)tj(q) − Tij(p, q)uj(q)] d∂R(q) (5.4)

for ∀p ∈ R \ ∂R, i, j = 1, 2, uj is a displacement vector, and tj is a traction vector. The
fundamental solutions act as the kernel functions in Somigliana’s identity. The singulari-
ties in these kernel functions do not affect the evaluation of the integral equation because p

cannot be on the boundary ∂R so p and q cannot coincide. Somigliana’s identity gives the
displacement of any point p within a body but it requires the knowledge of the displace-
ments and tractions on the boundary. In general only the displacements on the boundary
are known in the case of the Dirichlet problem or only the tractions on the boundary are
known in the case of the Neumann problem. In order to solve the elasticity problem it is
necessary to have an integral equation where the point p is on the boundary of the object.
This equation is known as Somigliana’s boundary identity and is [40]

cijuj(p) = PV
∫

∂R

[Uij(p, q)tj(q)

− Tij(p, q)uj(q)] d∂R(q) (5.5)

40



5

4 1

23

Element Boundary

7

Node
8

9 10
1

2

3

4
56

Figure 5.3: Boundary mesh.

for ∀p ∈ ∂R. The term cij is a constant that is 1
2
δij if the boundary ∂R is smooth at the point

p. If a corner exists at p then the value of cij depends on the angle formed by the corner.
It will be seen in the next section that the explicit calculation of cij will be unnecessary in
the numerical solution of the problem. The PV indicates that the integral exists only in the
sense of a Cauchy principal value because the integrand becomes unbounded when p = q

due to the singular kernel functions. The numerical treatment of these singularities will be
addressed in Section 5.2.3.

5.2.3 Partitioning of the Boundary Integral Equations

In order to numerically solve the boundary integral equation (5.5) it is necessary to partition
the boundary of the object. The partitioned boundary is shown in Figure 5.3. The boundary
is partitioned into elements with each element having three nodes. The ith node of the
mesh is at the position xi. The values of displacement u and traction t are defined at each
node and interpolation is used to evaluate the displacement and traction values between the
nodes. Quadratic interpolation is used with the following shape functions [2]

φ1(s) =
1

2
s (s − 1)

φ2(s) =
(

1 − s2
)

(5.6)

φ3(s) =
1

2
s (s + 1)

where s is a parameter that varies from -1 to 1 along the length of an element as shown in
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Figure 5.4. The value of u at any point along an element is given by

ui(s) =
3
∑

j=1

φj(s)u
j
i (5.7)

where the superscript j indicates the node number. An interpolation equation analogous to
(5.7) can be written for the object geometry x and the surface tractions t. Now that it has
been defined how x, u and t are interpolated within an element, it is necessary to decide
what continuity will be enforced between elements. For the boundary geometry x and the
boundary displacements u at least C0 continuity is needed between elements, otherwise
there could be gaps in the boundary of the object. It could be required that x and u also
have continuous derivatives between boundaries but this requirement would not allow ∂R

to have corners. Because of the need to model objects with corners, only C0 continuity will
be enforced on x and u between elements. In order to model objects with corners, it is
necessary to place an element boundary at the location of the corner.

The continuity requirement between elements for boundary tractions will be more re-
laxed because it is possible to have surface loadings that are discontinuous. Figure 5.5
shows a portion of a partitioned boundary that has a corner between elements 1 and 2. In
this figure the geometry x has C0 continuity between the two elements while the traction t

is discontinuous between the two elements. Since continuity is not required for the traction
vector between elements, there will be more traction degrees of freedom then there are dis-
placement degrees of freedom. In general for a boundary element model with N elements,
there are 2N nodes, 4N displacement degrees of freedom (each node has an u1 and an u2

degree of freedom) and 6N traction degrees of freedom.
Next, (5.5) will be expressed in a form that can be numerically computed. The first step

is to break the integral in (5.5) into N integrals, one for each element. Integrating over each

42



t1

t2
t3

t6

4x

2x
1x

t5

t4

Element 2

5

3x

x

3

12

4

5

Element Boundary

Element 1

Figure 5.5: Boundary tractions t can have discontinuities between elements while boundary
geometry x must have C0 continuity between elements.

element the following equation is obtained

cijuj(p) =
N
∑

k=1

∫ 1

−1

[

Uij(p, q(s))

(

3
∑

n=1

φn(s)tnj

)

− Tij(p, q(s))

(

3
∑

n=1

φn(s)un
j

)]

J(s) ds (5.8)

where

qi(s) =
3
∑

n=1

φn(s)xn
i

J(s) =
d∂R

ds

=

√

√

√

√

√

(

3
∑

n=1

∂φn(s)

∂s
xn

1

)2

+

(

3
∑

n=1

∂φn(s)

∂s
xn

2

)2

The Jacobian term J(s) is required because the integration is now over the local parameter
s. Since the nodal values un and tn are constant over each element, they can be taken out
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of the integral yielding

cijuj(p) =
N
∑

k=1

3
∑

n=1

tnj

∫ 1

−1
Uij(p, q(s))φn(s)J(s) ds

−
N
∑

k=1

3
∑

n=1

un
j

∫ 1

−1
Tij(p, q(s))φn(s)J(s) ds (5.9)

Switching to matrix notation

cu(p) +
N
∑

k=1

3
∑

n=1

∆Tnun =
N
∑

k=1

3
∑

n=1

∆Untn (5.10)

where

∆Un =
∫ 1

−1
φn(s)U(p, q(s))J ds

∆Tn =
∫ 1

−1
φn(s)T(p, q(s))J ds (5.11)

and c, ∆Tn, and ∆Un, are 2 × 2 matrices and un and tn are 2 × 1 vectors. The boundary
integral equation has now been partitioned into sums of integrals over each element. This
equation applies for all points p on the boundary of the object including the nodal points.
Next, (5.10) is applied to all 2N nodes in the boundary element mesh and obtain 2N vector
equations (4N scalar equations) that can be used to solve the elasticity problem. These
equations are

cu(pi) +
N
∑

k=1

3
∑

n=1

∆Tnun =
N
∑

k=1

3
∑

n=1

∆Untn (5.12)

where i = 1, 2, ..., 2N . The equation can now be written in a matrix form that can be used
to solve the elasticity problem as follows

[I]{cu} + [F ]{u} = [G]{t} (5.13)

where {u} is a 4N ×1 vector containing all of the nodal displacements and {t} is a 6N ×1

vector containing all of the nodal tractions. [F ] and [G] are 4N×4N and 4N×6N matrices
respectively which consist of the element integrals (5.11). It should be noted that for the
diagonal entries of these matrices, the point pi will be coincident with one of the nodes in
the element making the kernel functions singular. Because of this, special care needs to be
taken with these integrals. The term [I]{cu} can be combined with the [F ]{u} to obtain
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the following equation
[F ′]{u} = [G]{t} (5.14)

where the matrix [F ′] contains the c term information along its diagonal. The matrices [F ′]

and [G] depend completely on the geometry of the object and can be computed in advance
for a given object. The off diagonal terms of these matrices can easily be computed using
a standard quadrature routine such as Gauss integration. The singularity in the diagonal
elements of [G] is due to the singularity in the displacement fundamental solution (5.2).
This singularity is of the form ln r which can be computed numerically if the appropriate
quadrature rule is used. The package used to calculate the singular integrals was the GNU
Scientific Library (GSL) which uses an adaptive routine specifically designed to handle
singularities [14].

The singularity on the diagonal terms of the matrix [F ′] is more difficult to evaluate
because the singularity in these terms is due to the singularity in the traction fundamental
solution (5.3) which is of the form (1/r). This singularity cannot be readily computed
numerically but it turns out that the explicit calculation of these integrals can be avoided
by making the following observation [2]. If the vector {u} consists of only a rigid body
motion, the product [F ′]{u} will be zero. This is true because a pure rigid body motion of
an elastic object must lead to a stress free state constraining {t} to be zero. If {t} were not
zero, there would some deformation in the object and the displacement would not be pure
rigid body displacement. From this observation, the following equations can be generated

[F ′]
{

1 0 1 0 · · · 1 0
}T

= 0

[F ′]
{

0 1 0 1 · · · 0 1
}T

= 0 (5.15)

Using these equations, the two singular entries in each row of the matrix can be expressed
in terms of the other non-singular entries in the row. Note that the c term from (5.13) was
also contained in the diagonal of the matrix [F ′] so it is not necessary to explicitly calculate
that term.

Now that the system matrices [F ′] and [G] are defined, a solution to the elasticity prob-
lem can be obtained. For the Dirichlet problem, the nodal displacements {u} are known
and (5.14) can be used to calculate the nodal tractions {t}. For the Neumann problem, the
nodal tractions {t} are known and (5.14) can be used to calculate the nodal displacements
{u}. For the deformable template application the Neumann problem is the problem of in-
terest because it is necessary to apply a force distribution to the template and then calculate
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the resulting nodal displacements.

5.2.4 Solution of the Neumann Problem

The Neumann problem is defined as the case where the surface tractions {t} are known
and the surface tractions {u} need to be computed using (5.14). It can be shown [22] that
a solution to the Neumann problem exists if and only if

∫

∂R
ti(q) d∂R(q) = 0 (5.16)

where i = 1, 2. An object that satisfies (5.16) is said to be in a state of static equilibrium.
If (5.16) is satisfied then there are an infinite number of solutions {u} to (5.14). All of the
solutions differ only by a rigid body displacement. Because there are an infinite number of
solutions, the matrix [F ′] is not invertible. The rank of [F ′] is 4N − 3. There is one linearly
dependent row in [F ′] for each of the 3 possible 2D rigid body motions. Since [F ′] is not
invertible, singular value decomposition (SVD) is used to solve (5.14). SVD decomposes
[F ′] into the following form [37]

[F ′] = [U ][W ][V ]T (5.17)

where [W ] is a diagonal matrix consisting of the singular values of [F ′] and [U ] and [V ]

have columns that are orthonormal. Because the rank of [F ′] is 4N−3, three of the singular
values will be zero or very nearly zero. A unique solution can be obtained to the Neumann
problem by using the following equation [37]

{u} = [V ][diag (1/wj)][U ]T[G]{t} (5.18)

where wj are the singular values and the value (1/wj) is set to zero for the three singular
values near zero. This method finds the solution with the smallest magnitude ‖{u}‖2. This
has the effect of removing the rigid body motion component from the solution. Defining
[A] = [V ][diag (1/wj)][U ]T[G], (5.18) can be rewritten as

{u} = [A]{t} (5.19)

where [A] only depends on the object’s geometry so it can be computed off-line.
Once the nodal displacements {u} are found by solving the Neumann problem, the
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displacement at any point on the boundary can be found by using the interpolation functions
(5.6).

5.3 The BEM Deformable Template Matching Algorithm

The deformable template is registered to a binary edge image using the template matching
algorithm described in Chapter 2.

5.3.1 The Error Function for BEM Deformable Object Tracking

BEM will be used to model the non-rigid portion of the object’s motion. To do this, the
template is deformed according to the BEM model before performing the affine transfor-
mation. The deformation transformation (2.6) becomes

r′ = T (r, θ,X, {t}) = X +





cos θ − sin θ

sin θ cos θ



 (r + u) (5.20)

where u(r, {t}) is the displacement of the template edge pixel r due to the applied traction
distribution {t} on the boundary of the object. The displacement vector u(r, {t}) is ob-
tained from the solution to the Neumann problem (5.19). The error function (2.4) becomes

E(θ,X, {t}) =
M
∑

i=1

‖r′i − wi‖
2 (5.21)

Minimizing the above error function will give the traction distribution {t} that best fits the
image in a least squares sense. As mentioned previously, in order for there to be a solution
to the Neumann problem, {t} must satisfy (5.16). Therefore, the minimization of (5.21)
is a constrained minimization problem. The next section demonstrates how to convert this
constrained minimization problem into an unconstrained minimization problem of reduced
dimensionality.

5.3.2 Constrained Minimization

The Neumann problem can only be solved if the equilibrium condition (5.16) is satisfied.
Therefore, when (5.21) is minimized, {t} must be constrained to satisfy (5.16). A method
is presented in this section that solves the constrained minimization problem efficiently.
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The first step is to express (5.16) in discrete form. The equilibrium condition can be
partitioned into sums of integrals over each of the N elements as follows:

N
∑

k=1

3
∑

n=1

∆Pntn =





0

0



 (5.22)

where

∆Pn =





1 0

0 1





∫ 1

−1
φn(s)J(s) ds (5.23)

This discrete form can now be written as a matrix equation.

[E]T{t} =





0

0



 (5.24)

where [E] is a 6N × 2 matrix. The above constraint equation is a linear equality constraint.
The Generalized Elimination Method as described by Fletcher [13] will be used to eliminate
two variables from the optimization problem by applying a linear transformation. Applying
this transformation, the minimization problem (5.21) can be recast in the form:

E(θ,X, [Z]{y}) =
M
∑

i=1

‖r′i − wi‖
2 (5.25)

where {Z} is a 6N × (6N − 2) matrix. Minimizing (5.25) gives values for θ, X and {y}

that best match the image in a least squares fashion. The traction distribution can then be
obtained by the transformation {t} = [Z]{y}. The matrix [Z] acts as a transformation that
maps any {y} ∈ <6N−2 to a traction {t} ∈ <6N which satisfies equilibrium. As suggested
by Fletcher, QR decomposition can be used to find a [Z] satisfying this property (the choice
of [Z] is not unique). The QR decomposition for [E] can be written as

[E] = [Q]





R

0



 = [Q1Q2]





R

0



 = [Q1][R] (5.26)

where [Q] is a 6N × 6N orthogonal matrix, [R] is a 2× 2 upper triangular matrix, and [Q1]

and [Q2] are 6N × 2 and 6N × 6N − 2 matrices, respectively. The transformation [Z] is
set to [Q2].

The template matching algorithm has now been recast into an unconstrained form of
reduced dimensionality, (5.25), that can be minimized using standard gradient based mini-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: (a)-(c) BEM deformable template results when applied to a microgripper, (d)-
(f) to a foam block, and (g)-(i) to a mouse oocyte (approximately 50 µm in diameter in the
undeformed state).

mization techniques.

5.4 Initial BEM Template Matching Results

The results of the BEM template matching algorithm applied to a microgripper, foam block
and a mouse embryo cell are shown in Figure 5.6. The microgripper in Figures 5.6(a-c)
is used for robotic micro-assembly tasks [52]. A 90 node BEM mesh is used to model
the gripper and is shown in Figure 5.7. Only a portion of the gripper’s contour was used
in tracking. This is necessary because much of the gripper is occluded by the tube that
closes it (Chapter 6 describes a method to handle this occlusion in a robust way without
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alternating the template). The modulus of elasticity used by the BEM model was set to that
of spring steel, the material used to construct the gripper.

Unlike the gripper, which satisfies the assumptions for linear elasticity, the foam block
and the cell exhibit deformations that do not satisfy these assumptions. The BEM model
used to deform the template assumes linearly elasticity, but, as can be seen from Figures
5.6(d-i), the deformable template was able to track the non-linear objects. In order to allow
the template to track these large deformations, the modulus of elasticity used in the BEM
model was decreased to make the template softer.

Figures 5.6(g-i) show three frames from the tracking of a mouse oocyte. The cell is
being robotically injected [45]. Tracking deformations of the cell can provide useful feed-
back for the robotic injection process and can be used in combination with a force sensor
to learn more about the material properties of cells. Note that the horizontal edges were
removed from the image during the tracking process in order to prevent the template from
being attracted to the pipette.

If the objects being tracked are linearly elastic, the material properties used in the BEM
model and the traction distribution {t} applied to the template will corresponding to real
world values. For non-linearly elastic objects such as the foam block or the cell, the material
properties and the forces applied to the template will have no relation to real world values.

Figure 5.8(a) shows the a template matched to a computer generated image of a de-
formable gripper (the template is shown in black on the top jaw of the gripper). The figure
also shows the undeformed BEM template, the forces applied to the template in order to
match the image and the stress distribution within the matched template.

5.5 Strain Energy Regularization

The BEM tracking algorithm as described above only constrains the forces to satisfy static
equilibrium and contains no regularization terms. The lack of regularization can lead to
overfitting when the image contains noise or the object in the image does not match the
template’s geometry exactly. To prevent overfitting, a regularization term can be added to
the energy function (5.25). The minimization problem becomes

E(θ,X, [Z]{y}) =
M
∑

i=1

‖r′i − wi‖
2
+ αSE({t}) (5.27)
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Figure 5.7: BEM mesh used to track microgripper.

where SE({t}) is the strain energy of the BEM model as a function of the traction distri-
bution applied to the model and is defined as

SE({t}) =
∫

R

[

1

2E

(

τ 2
11 + τ 2

22

)

−
ν

E
τ11τ22 +

1

2G
τ 2
12

]

dR (5.28)

The α term in (5.27) determines how much the model can deform. A large value of α will
prevent the model from deforming at all while a small value of α will permit overfitting to
occur.

The definition of strain energy is the amount of work that must be applied to the object
in order to deform it from its undeformed shape to its deformed shape. Using strain energy
for regularization leads to smoother tracking results because it takes a large amount of
work to deform the template to a shape that is not smooth. Strain energy measures have
been used for regularization in other tracking algorithms [54] [4] [32].

5.5.1 Numerical Calculation of Strain Energy

In order to evaluate the integral (5.28) efficiently, the domain R must be divided into area
elements. Two-dimensional Gauss integration is used to evaluate the integral numerically
over each of the area elements. Since the strain energy is a function of internal stress,
the internal stress must be computed at the Gauss points as a function of the applied trac-
tions {t}. This can be done using the following boundary integral equation derived from
Somigliana’s identity (5.4) using the stress-displacement relationship for plane stress [15]

τij(p) =
∫

∂R

[Sijk(p, q)tk(q)

− Rijk(p, q)uk(q)] d∂R(q) (5.29)
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(a)

(b)

(c)

(d)

Figure 5.8: (a) Gripper jaw tracking solution, (b) undeformed mesh, (c) the traction distri-
bution {t}, and (d) the interior stress field where lighter colors indicate higher stresses.
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where p ∈ R \ ∂R and Sijk and Rijk can be computed in terms of Uij and Tij using the
stress-displacement relationship for plane stress which results in the following equations

Sijk(p, q) =
(

νE

1 − ν2

)

δijUmk,m + G (Uik,j + Ujk,i) (5.30)

and
Rijk(p, q) =

(

νE

1 − ν2

)

δijTmk,m + G (Tik,j + Tjk,i) (5.31)

Stress can only be calculated within the interior of the object using (5.29) because the
kernel functions are highly singular and cannot be integrated when p ∈ ∂R [15]. However,
this is acceptable since all of the Gauss points will lie within the interior of the object.

The equation for stress (5.29) can be expressed in matrix form in a manner analogous
that used to obtain (5.13). Doing this, the following is obtained



















τ11

τ22

τ12



















= [S] {t} − [R] {u} (5.32)

where [S] and [R] are 3 × 6N and 3 × 4N matrices respectively. The solution of the Neu-
mann problem (5.19) can be used to express the above equation as a function of boundary
tractions alone giving the equation



















τ11

τ22

τ12



















= ([S] − [R][A]) {t} (5.33)

For each Gauss point used to calculate the strain energy over the entire domain R, the
matrices [S] and [R] can be stored so that future computations of the strain energy can be
computed efficiently.

5.5.2 Strain Energy Regularization Results

Figure 5.9 shows the results of applying strain energy regularization to the boundary ele-
ment tracking algorithm. The algorithm is applied to the tracking of a rubber torus. The
rubber torus is about 1 cm in diameter. Figures 5.9(a,b) show the tracking of the torus
without using strain energy regularization and Figure 5.9(c,d) show the tracking solution

53



(a) (b)

(c) (d)

Figure 5.9: Results obtained tracking a rubber torus when (b) strain energy regularization
is not used and when (d) strain energy regularization is used. The initial template locations
are shown to the left of each solution and the templates are shown in black.

using strain energy regularization. The initial template location and shape are shown on the
left of the figure and the tracking solutions are shown on the right. It can be seen that with-
out strain regularization the template overfits the image and giving a non-smooth tracking
result.

5.6 Summary and Conclusions

This Chapter has presented a deformable object tracking algorithm based on the boundary
element method that is capable of tracking general two dimensional objects. Even though
the model is based on linear elasticity, it was shown that the algorithm is able to track
objects with non-linear material properties. Chapter 8 will present an application that relies
on this property to generate training data for neural networks.

Strain energy regulation was presented as a add-on to the BEM tracking algorithm to
help insure smooth tracking results. This is important for tracking objects undergoing large
deformations or when there is a large amount of image noise.
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BEM deformable object tracking is a valuable tool for the manipulation of deformable
objects or for learning the material models of elastic objects.
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Chapter 6

Deformable Object Tracking Robust to
Occlusions and Spurious Edges

6.1 Introduction

In order for the deformable object traking algorithm to be useful for robotics applications,
it must be robust. Common causes of tracking errors are the presence of spurious edges and
occlusions of the object being tracked. Spurious edges are edges from objects other than
those from the object of interest. These edges act to attract the deformable template away
from the object of interest. Spurious edges must be eliminated in order to obtain accurate
results. Occlusions occur when an object in the scene blocks the view of the object of
interest. Occlusions can occur frequently in robotic applications and the tracking algorithm
must be able to provide useful results with the information available even when there is
significant occlusion.

This chapter presents modifications to the BEM deformable object tracing algorithm
presented in the previous chapter that make it robust to spurious edges and occlusions (see
Figure 6.1 for a BEM tracking example). It is first shown how this algorithm is modified
to include a robust error measure that addresses the problem of occlusion. Next, a mod-
ification to the edge detection algorithm is introduced that rejects spurious edges. Two
methods are used to reject spurious edges, an interior intensity based edge classifier and a
neural network edge classification method. The performance of each of these methods is
demonstrated for the problem of tracking a gripper in a highly cluttered environment.
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Figure 6.1: Deformable object tracking example using BEM to model deformations. The
template’s initial condition is shown on the left and the tracking solution is shown on the
right.

6.2 Robustness to Occlusion

The least squares error measure used to calculate (2.7) works well in many situations,
however, use of this error measure implicitly assumes that the errors between the template
and the edge image are normally distributed [12]. Situations where the errors in the image
are not normally distributed often occur. One common case where errors are not normally
distributed occurs when there is occlusion. A least squares error measure does not provide
the correct solution when there is occlusion as can be seen in Figure 6.2(b).

A measure not affected by occlusion is required. The Cauchy error measure given by
[44]

ρ(r) = log
(

1 +
1

2
r2
)

(6.1)

where r is the error, has robust properties particularly relevant to this problem. For the
template matching application, r is defined to be the distance from each template vertex to
the nearest image edge vertex. Using this error function, the minimization problem (5.21)
becomes

E(θ,X, {t}) =
M
∑

i=1

log
(

1 +
1

2
‖r′i − wi‖

2
)

(6.2)

Using this robust error measure, a deformable object can be successfully tracked even when
a large portion is occluded. A tracking result using the Cauchy error measure is shown in
Figure 6.2(c).

The Cauchy error measure has better performance in this situation because the Cauchy
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(a) (b)

(c)

Figure 6.2: Effect of error measure on tracking results when tracking a partially occluded
object. (a) The initial template location and shape for both algorithms, (b) the tracking
solution when using the least squares error measure, and (c) the tracking solution when
using the Cauchy error measure.
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Figure 6.3: Comparison between least squares and Cauchy error measures.

error measure penalizes template pixels that are far from image edge pixels less than the
least squares error measure does. This can be seen from Figure 6.3 which shows both the
least squares error measure and the Cauchy error measure. This property of the Cauchy
error measure causes the error function to ignore the occluded portions of the object being
tracked.

6.3 Robustness to Spurious Edges

When tracking objects in real world scenes there are often edges present that are not from
the object being tracked. These spurious edges can draw the template away from the object
of interest. In this section, a modified Canny edge operator is presented that only preserves
edges from the object being tracked by using information known about the object. Figure
6.4 illustrates the problem. Figure 6.4(a) shows an image containing the object to be tracked
(the upper left gray rectangle). All of the edges in the original image are shown in Figure
6.4(b) and Figure 6.4(c) shows only the edges from the object that is to be tracked. In order
to obtain the edge image shown in Figure 6.4(c) it is necessary to probe the pixel values on
either side of the edges shown in Figure 6.4(b) to determine of the edge in question bounds
the object being tracked. For example, in Figure 6.4, if an edge has the dark gray color of
the rectangle being tracked on one side, then the edge should be preserved. In this section
a modification to the Canny operator that suppresses unwanted edges is presented.
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The Canny edge detector uses the image gradient and the continuity of edges to de-
termine whether an edge candidate should be accepted or rejected. This algorithm works
well to find general edges, however, it does not consider information that may be available
about the object being tracked. By using some information about the object of interest, the
edges in the scene that are not from this object can be removed. The first step is to perform
a Canny edge detection operation on the image. The ith edge pixel found by the Canny
operator is labeled wi. For each edge pixel, wi, samples are taken in the positive direction
of the edge normal and in the negative direction of the edge normal. The edge normal ni is
defined by:

ni =
∇Ii

‖∇Ii‖
(6.3)

where ∇Ii is the gradient of the image at the location of edge vertex wi. The edge normal
sample vector in the positive direction is referred to as S+

i and in the negative direction is
referred to as S−

i . Figure 6.5 illustrates the edge normal samples for a representative edge
pixel wi. The samples are computed using bilinear interpolation and the samples are spaced
one pixel apart. The number of samples taken in each direction depends on the application.
Five samples are used for the results presented in this chapter.

Once the edge normal sample vectors have been obtained, they are used to determine
whether the edge pixel should be accepted or rejected. This is a classification problem. Let
f be the classifier function where f is defined so that an edge is accepted if f

(

S+
i ,S−

i , ω
)

=

1 and is otherwise rejected. The vector ω represents the parameters that define the classifier.
Two forms for f are used in this chapter: one compares the edge normal sample vector to
the known intensity of the interior of the object being tracked and the other uses a neural
network model to evaluate whether an edge normal sample vector represents the desired
object or not.

6.3.1 Interior Intensity Based Classifier

The first approach to classification compares the edge normal sample vectors, S+
i and S−

i ,
to the known intensity C of the interior of the object. The error between the edge normal
sample vectors and the interior intensity is computed for each edge pixel in the image. If
the error is below a threshold value, H , then the edge pixel is accepted. The classifier f is
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(a) (b) (c)

Figure 6.4: Edge detection in a cluttered scene: (a) original scene, (b) edges in the scene,
and (c) edges from the object of interest.

Edge
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Figure 6.5: Edge samples used to test whether or not to keep an edge pixel.
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(a) (b)

(c) (d)

Figure 6.6: Comparison of edge detection techniques discussed in the text. (a) The original
image, (b) Canny edge detection algorithm, (c) edge detection example using only object
intensity to classify edges, and (d) edge detection example using the neural network edge
classifier.
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defined as

f
(

S+
i ,S−

i , ω
)

=



















1 If
∥

∥

∥S+
i − C

∥

∥

∥ < H

or
∥

∥

∥S−

i − C
∥

∥

∥ < H

0 Otherwise

(6.4)

For this classifier, the parameter vector ω is defined to be the interior intensity of the object
and the threshold: {C, H}.

An example of this method applied to an image of the compliant gripper is shown
in Figure 6.6(c). The original Canny edges are shown in Figure 6.6(b). It can be seen
from Figure 6.6(c) that using the interior intensity of the object to classify edges does
not eliminate all spurious edges (false positives) and some of edges from the object being
tracked are lost.

6.3.2 Neural Network Classification Method

It was shown above that using the object’s interior intensity to classify edge candidates
leads to false positives and to the loss of some of the edges from the object being tracked.
To create a more robust classifier algorithm it is necessary to define a more general classifier
than one simply based the threshold of an error measure. A neural network classifier is used
in order to decrease the number of false positives. The neural network takes as input the
edge normal samples and outputs a value between 0 and 1. If the output is greater than 0.5,
the edge is accepted, otherwise the edge is rejected. The classifier f becomes

f
(

S+
i ,S−

i , ω
)

=



















1 If NeuralNet(S+
i ) > 0.5

or NeuralNet(S−

i ) > 0.5

0 Otherwise

(6.5)

For the neural network edge classifier, the parameter vector ω represents the weights of
the trained neural network model. The neural network is a standard feed-forward neural
network trained by error back propagation. In order to train the neural network, training
pairs need to be obtained. The training pairs are obtained from representative images of
the scene. From the training images, the positive and negative edge normal sample vectors
are calculated for all of its edge pixels. The edge normal sample vectors that correspond
with the interior of the object of interest are paired with a neural network output of 1.0 and
the normal sample vectors that do not correspond to the interior of the object of interest
are paired with the neural network output of 0.0. These training pairs are used to train the
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(a) (b)

(c)

Figure 6.7: Effect of edge detection algorithm on tracking results for a cluttered scene. (a)
The initial template shape and location for both methods, (b) the tracking solution when
using the Canny edge detector, and (c) the tracking result when using the neural network
edge classifier.

neural network model. For the results presented here, the neural network model has 10
hidden nodes and 6180 training pairs were used (2060 sample vectors corresponding to an
actual edge and 4120 samples corresponding to a false edge).

Figure 6.6(d) shows the performance of the neural network classification scheme ap-
plied to a test image (this image was not used in the training of the neural network). It can
be seen that the neural network edge classifier eliminates almost all of the spurious edges
without losing any of the edges from the object of interest.

The elimination of spurious edges greatly improves the robustness of the deformable
object tracking algorithm. Figure 6.7(c) shows the successful tracking solution for a scene
with a large number of spurious edges.
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Table 6.1: Quantitive measure of the performance of the algorithms introduced in this
chapter. Error values are measured in mm.

Control Occlusion Spurious Edge
Image Set Image Set Image Set

Least Squares Error - Canny
(LSE-C) 0.249 44.011 9.2814

Cauchy Error - Canny
(CE-C) 0.270

Least Squares Error - Canny + Neural Net
(LSE-C+NN) 0.293

This method for the suppression of spurious does have the drawback of increased com-
putation time over the standard Canny edge detection algorithm. For the image shown in
Figure 6.6(a), the Canny edge detector takes approximately 0.02 seconds to process the
whole 640x480 image. The use of the neural network edge classifier to suppress the spu-
rious edges adds approximately 0.75 seconds to the computation time (these times were
obtained using a 2.66 GHz Intel processor). The edge suppression algorithm spends most
of its computation time interpolating the image to obtain the sample vectors, S+

i and S−

i .
The neural network edge classifier could be made to run in real-time by optimizing the
interpolation routine. One option for speeding up the interpolation calculations would be
to make use of the image interpolation functionality built into modern graphics hardware.

6.4 Performance Analysis

The performance of the above algorithms was evaluated quantitively in order to measure
how much the tracking algorithm is improved by the modifications that have been pre-
sented. Five fiducial marks where placed on the gripper. These marks were used to measure
the quality of the tracking solution by measuring the error between the tracking algorithm’s
predicted location of the marks and the actual location of the marks. Table 6.1 summarizes
the results that were obtained. The columns represent the three different image sequences
that were used. The first set is a control set, the second set introduces occlusion, and the
third set introduces spurious edges (see Figures 6.1, 6.2, and 6.7, respectively, for example
images from the sets). The rows indicate the error measure and edge detector used. The
table entries show the average error between the template fiducial marks and the image
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fiducial marks and are measured in the units of mm.
It can be seen from the table that the performance of the least squares error measure and

Canny edge detector algorithm (LSE-C) is not satisfactory for the occlusion and spurious
edge image sets. For the occlusion image set, the Cauchy error measure and Canny edge
detector algorithm (CE-C) has performance that is nearly as good as the LSE-C algorithm
for the control image set. For the spurious edge image set, the least squares error measure
and neural network edge classifier algorithm (LSE-C+NN) again performs almost as well
as the LSE-C algorithm does for the control set.

6.5 Summary and Conclusions

A deformable object tracking algorithm that is robust to occlusion and to spurious edges
was presented. A robust error measure was used to handle the problem of occlusion and
a modification of the Canny edge operator was used to eliminate spurious edges. The
enhanced performance resulting from these modifications was demonstrated by tracking a
four degree-of-freedom compliant gripper.
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Chapter 7

Vision-Based Force Measurement1

Microassembly is becoming increasingly important, because it enables the creation of
MEMS devices with greater functionality. Through an assembly process, MEMS devices
can be created with three dimensional features and can consist of structures created by
incompatible microfabrication processes. Force sensing is important for microassembly
because the objects involved are often fragile. Force sensing is also essential for biomanip-
ulation where the biological cells and tissues being handled are easily damaged. Currently,
force measurement at the micro scale is usually done using laser-based optical techniques
[35] or using piezoresistive material embedded in an elastic part [49]. Both of the meth-
ods are difficult to implement because they require a specially designed elastic part. For
example, a laser-based optical force sensor requires precise alignment of laser optics with
respect to the elastic part, and a piezoresistive force sensor requires that a piezoresistive
layer be embedded within the part during its manufacture. Vision-based force measure-
ment (VBFM) has the advantage that it can be used with existing elastic parts. It also
has the advantage that it makes use of the microscope optics and cameras that are already
present in a micromanipulation or biomanipulation workstation.

This chapter describes a deformable template matching approach that is used to recover
the force applied to an elastic object, where the template deforms according the governing
equations of elasticity. The deformable template registers to a Canny edge image [5] of a
deformed object using an error minimization approach.

This chapter is organized as follows. Section 7.1 formulates the elasticity problem and
concludes by showing how the Dirichlet to Neumann map can be used to recover the force

1 c©2004 IEEE. Reprinted, with permission, from ”Vision-based force measurement,” Greminger, M.A.,
Nelson, B.J., IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 3, vol. 26, 2004.
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distribution applied to an elastic object using the displacement field of the contour. The
problem of recovering the displacement field of the contour of an elastic object is discussed
in Section 7.2, where it is shown that the recovery of the contour displacement field can
be solved using deformable templates. Section 7.3 formulates the deformable template
matching algorithm for a cantilever beam. The application of VBFM to a micro-gripper
device is discussed in Section 7.4. A concluding discussion is given in Section 7.6.

7.1 Linear Elasticity Theory

In this chapter only deformable objects that are linearly elastic are considered. Linear
elasticity theory assumes that the object’s strains are infinitesimal and that the object’s
stress-strain relationship is linear. Both of these assumptions are satisfied for the materials
to be considered here: silicon and steel. Both silicon and steel exhibit a linear stress-strain
relationship for a large working range. It is also assumed the object is in a state of two
dimensional stress referred to as plane stress.

7.1.1 The Formulation of the Plane Stress Elasticity Problem

The plane stress assumption assumes a state of stress where there is no stress in the x3

direction of an object. Therefore, the stress components τ13, τ23, and τ33 will have a value
of zero (see Figure 7.1). The remaining stress components, τ11, τ22, and τ12, are functions
of x1 and x2 only. Consider the bounded two dimensional domain R shown in Figure 7.2.
It is assumed that R is defined such that the divergence theorem applies. Two dimensional
domains where the divergence theorem applies are those that are bounded by a finite num-
ber of piece-wise smooth curves [18] and are known as normal domains. The elastic body
defined by R is governed by the equations of elasticity which are simplified for the plane
stress case. The equations of elasticity can be expressed in terms of displacements u(x) by
[43]:

µ∇2uα + µ
(

1 + ν

1 − ν

)

∂

∂xα

(

∂u1

∂x1

+
∂u2

∂x2

)

+ Fα = 0 (7.1)

where α = 1, 2, µ is the shear modulus, and ν is the Poisson’s ratio. The material proper-
ties of an isotropic, elastic material are completely defined by the shear modulus and the
Poisson’s ratio.
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Figure 7.1: Cube in three dimensional state of stress.
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Figure 7.2: Elastic body R and its associated contour C.
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The boundary conditions for the elasticity problem can be expressed as a prescribed
displacement vector fi on the contour C, known as a Dirichlet boundary condition:

ui|C = fi (7.2)

or a prescribed traction vector Ti on C, known as a Neumann boundary condition:

τijnj|C = Ti (7.3)

where nj is the outward unit normal of C and the stress tensor τij can be expressed in terms
of displacements by [43]:

τ11 =
2λµ

λ + 2µ

(

∂u1

∂x1

+
∂u2

∂x2

)

+ 2µ
∂u1

∂x1

(7.4)

τ22 =
2λµ

λ + 2µ

(

∂u1

∂x1

+
∂u2

∂x2

)

+ 2µ
∂u2

∂x2

(7.5)

τ12 = µ

(

∂u1

∂x2

+
∂u2

∂x1

)

(7.6)

τ13 = τ23 = τ33 = 0 (7.7)

The traction vector is the force per unit length applied to the contour of the object. It is
assumed throughout this discussion that fi and Ti have piecewise continuous derivatives.

7.1.2 The Dirichlet to Neumann Map

The Dirichlet to Neumann map Λ [34][47] is a mapping from the surface displacements fi

to the surface tractions Ti and can be expressed as:

Λ(fi) = τijnj|C = Ti (7.8)

In order for Λ to be defined it is necessary that for each fi there exists a unique Ti. The ex-
istence and uniqueness theorems of linear elasticity are sufficient to show that the Dirichlet
to Neumann map does exist. The uniqueness theorem for the Dirichlet plane stress problem
is due to Kirchoff [27]. Kirchoff’s proof shows that the solution to the Dirichlet problem
is unique as long as the following conditions on the shear modulus and Poisson’s ratio are
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satisfied:

µ 6= 0 − 1 < ν <
1

2
(7.9)

which are satisfied for the materials being considered. The existence of solutions for the
Dirichlet plane stress problem can also be shown [43]. The existence of the Dirichlet to
Neumann map shows that the traction distribution on the contour of a linearly elastic body
can be uniquely determined from the displacement field of its contour.

In general, the existence of the Dirichlet to Neumann map cannot be proven for non-
linear problems. However, the concept of the Dirichlet to Neumann map can be applied to
nonlinear problems where the mapping can often be computed using numerical modeling
techniques.

7.2 Recovery of Boundary Displacement Field From Con-
tour Data

The vision-based force measurement problem is reduced to that of finding the displacement
field of the contour of an object. Figure 7.3 shows an undeformed contour C1 along with
a deformed contour C2. In general, the problem of determining the displacement field that
leads to the deformed contour C2 does not have a unique solution. Figure 7.4 illustrates this
point by showing how two distinct displacement fields can lead to two identical deformed
contours, C2 and C3. Three points, P1, P2, and P3, are shown on the undeformed contour C1

as well as on the deformed contours C2 and C3. Experience with elastic objects suggests
that the displacement field that created the contour C2 is the correct one, however, both
displacement fields are equally valid.

In order to find an unique displacement field for a given deformed contour it is nec-
essary to make some assumptions about the object that is being deformed. It is assumed
that it behaves according to (7.1) and that the strain components are infinitesimal. With the
assumption of infinitesimal strains it becomes clear that the displacement field that led to
contour C3 is not physically possible because it would require large strain values. Since
the strains are assumed to be small, the deformed contour will not differ much from the
undeformed contour. With these assumptions in mind, a logical way to recover the dis-
placement field is to perturb the undeformed contour C1 (see Figure 7.5) by small amounts
until it matches the deformed contour C2. The undeformed contour will be perturbed by
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Figure 7.3: Undeformed contour C1 and deformed contour C2.
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Figure 7.4: Illustration of two distinct displacement fields that lead to identical deformed
contours, C2 and C3.
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Figure 7.5: The contour C1 is perturbed by the traction distribution Ti so that it matches
the deformed contour C2.

assuming a traction distribution Ti and then deforming the contour according to (7.1). Fig-
ure 7.5 shows a perturbed contour C ′

1, with a traction distribution Ti applied to it, which
matches the deformed contour C2.

The perturbation approach just described can be implemented with a deformable tem-
plate matching algorithm where the undeformed template is the undeformed contour of the
object, C1, and the template is perturbed by a traction distribution Ti according to the gov-
erning equations of elasticity to obtain the deformed contour C ′

1. If the elastic model used
to deform the template accurately models the elastic object shown in the image, the solution
to the Dirichlet to Neumann Map is given by the traction distribution Ti applied to deform
the template. Therefore, the Dirichlet to Neumann map can be evaluated for a particular
deformed object through the use of deformable template matching provided that the tem-
plate is deformed according the equations of elasticity. The following section demonstrates
how this deformable template matching technique can be applied to a cantilever beam.

7.3 Force Recovery with Deformable Templates

As mentioned above, the forces can be recovered by perturbing a deformable template. The
first object tested with this approach was a silicon cantilever beam 450 µm long. An image
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Figure 7.6: Image of micro-cantilever beam.

of the cantilever beam is shown in Figure 7.6. The beam was manufactured using standard
microfabrication techniques and is of a type used in atomic force microscopes.

7.3.1 Incorporating Force Into The Template Matching Algorithm

Minimizing (2.4) will determine the rigid body motion of the object. The nonrigid motion
of the template will be modelled using (7.1). For the cantilever beam, the Bernoulli-Euler
law is assumed to apply [43]. The Bernoulli-Euler law can be used to simplify (7.1) and
leads to the following displacement solution for the cantilever beam shown in Figure 7.7(a):





u1

u2



 =





0
Fr2

1

6EI
(3L − r1)



 (7.10)

where F is the force being applied to the cantilever, L is the length of the cantilever, E is
the modulus of elasticity of the cantilever, and I is the moment of inertia of the cantilever’s
cross section.

Next, it is necessary to apply this displacement field to the cantilever template. It can
be seen from (7.10) that the x1 component of the template points will remain undeformed.
It should also be noted that if a template point’s x1 component is less than zero, then the
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point will not be transformed. If a template point’s x1 component is between zero and L,
then the point will be translated in the x2 direction by u2 in (7.10). For points with an x1

component greater than L, they will be translated in the x2 direction, but the equation will
be different from (7.10) because the radius of curvature of the cantilever becomes infinite
for r1 > L . Once all of the template points are translated appropriately, then the affine
transform (2.3) can be applied to the new template points to add the rigid body motion. The
equations used to obtained the transformed template pixels are

r′ = A(r) for (r1 < 0) (7.11)

r′ = A









r1

r2



+





0
Fr2

1

6EI
(3L − r1)







 for (0 ≤ r1 < L) (7.12)

r′ = A









r1

r2



+





0
FL2

6EI
(3r1 − L)







 for (L ≤ r1) (7.13)

where A(r) is an affine transform defined in (2.3).
Using the template transformations (7.11) through (7.13), the template matching error

function (2.7) becomes a function of one additional variable, the force F applied to the
template. This is shown by the following error function:

E(θ,X, F ) =
N
∑

i=1

‖ri′ − wi‖2 (7.14)

When this error function is minimized the force F that is being applied to the cantilever
is obtained. Figure 7.7(b) shows the undeformed cantilever template that was obtained
from a Canny edge image of the cantilever. Figure 7.7(c) shows a deformed template along
with the undeformed template. The left half of Figure 7.8 shows an image of a deflected
cantilever beam and the right half of this figure shows a cantilever template matched to the
image.

7.3.2 Experimental Setup

A diagram of the experimental setup used to measure the force applied to the cantilever
beam is shown in Figure 7.9. The cantilever beam is a 450 µm long AFM probe tip
with a spring constant of approximately 0.1 N/m. A known displacement is applied to
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Figure 7.7: Deformable cantilever template.

Figure 7.8: Deflected cantilever is on the left and the template matched to the deflected
cantilever is on right.
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Figure 7.9: Vision-based force measurement experimental setup.

the cantilever beam using a 3 DOF piezo-actuated nanopositioner from Queensgate with
sub-nanometer positioning resolution. A microscope mounted with a CCD camera is used
to obtain an image of the cantilever. A video capture card digitizes the CCD image. An
image captured from the CCD camera is shown in Figure 7.6.

7.3.3 Cantilever Results

To evaluate the performance of the VBFM algorithm, a known displacement was applied
to the cantilever beam using a Queensgate nanopositioner. These displacement inputs were
used to calibrate the force measurement system. Figure 7.10 shows a force versus applied
displacement plot. The 1 σ confidence intervals are shown on the plot. The maximum 1 σ

confidence interval for the force measurements is +/- 2.85 nN. The system was tested with
both a 10x and a 20x objective lens. Table 7.1 summarizes the performance of the force
sensor with both the 10x objective lens and the 20x objective lens.
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Table 7.1: Summary of results for visual force sensor applied to a cantilever beam.
Magnification NA Rayleigh Limit Pixel Size Deflection Force

(µm) (µm) Error (nm) Error (nN)
10x .28 1.000 1.050 1σ 88.7 8.87

2σ 180.5 18.05
3σ 276.5 27.65

20x .42 .700 .530 1σ 28.5 2.85
2σ 58.0 5.80
3σ 88.7 8.87

Figure 7.10: Calibration plot for cantilever force sensor with 20x objective lens.
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7.4 Vision-Based Force Measurement Applied to a Micro-
Gripper

The methods presented in this chapter can be applied to more complex objects. In this
section, vision-based force measurement will be applied to a micro-gripper. The top of
Figure 7.11 shows a micro-gripper developed by Yang et al. which is used for a specific
microassembly task. The gripper is cut by micro-wire electro-discharge machining (EDM)
from spring steel 254 µm thick. An object is grasped by sliding a tube over the gripper to
force the jaws of the gripper together. When this gripper is used for an assembly task it is
important to measure the gripping force that the gripper applies to the object being held in
order to ensure a stable grasp is achieved and to avoid damage to the object being grasped.

7.4.1 Modeling of the Micro-Gripper

Each jaw of the gripper can be modeled as a cantilever beam. The bottom of Figure 7.11
shows the deflection model parameters, where D is the displacement of the jaw due to the
clamping tube making contact with the gripper, F is the force applied to the object being
held and u is the displacement of the jaw at a position x along its length. D is a function of
the clamping tube position, L2, and can be written as:

D = L2 sin β − r cos β (7.15)

where r is the inner radius of the clamping tube and β is defined in Figure 7.11. Because
the tube forces the gripper jaw to deflect there is a reaction force R applied to the tube by
the jaw. In order to solve for u it is first necessary to solve for this reaction force. The
displacement D applied to the gripper acts as a constraint applied to the cantilever beam.
Given this constraint, the reaction force R can be solved for by using the beam equation
with the constraint that the displacement must be of magnitude D at the location where the
tube comes into contact with the gripper jaw. Using this approach, R can be written as

R =
3

2

Fcos(β)2L1

L2

−
1

2
Fcos(β) + 3

EIcos(β)3sin(β)

L2
2

− 3
EIcos(β)4r

L3
2

(7.16)

Using the above equation for R, is straightforward to calculate the displacement field, u, of
the jaw using the Bernoulli-Euler law. The equations for u are shown below. The form of
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u depends on the value of x relative to the position of the reaction force R and the gripping
force F .

u1 =
1

6

Fcosβx2(3L1 − x)

EI
d −

1

6





1

2L3
2


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1
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)3
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(7.17)
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(7.19)

where u1 is valid for 0 < x ≤ L2/(cosβ), u2 is valid for L2/(cosβ) < x ≤ L1, and u3

is valid for L1 < x. The same set of equations can be obtained for the bottom half of the
microgripper modulo sign. Since the clamping force F and the position of the tube L2 are
the degrees of freedom of the above equations, the vision algorithm must solve for both L2

and F . Therefore (7.14) becomes:

E(θ,X, F, L2) =
N
∑

i=1

‖ri′ − wi‖2 (7.20)

When this error function is minimized the force applied to the gripper F and the position
of the clamping tube L2 are found.
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7.4.2 Micro-Gripper Results

The tweezer template was first tested on images created by ANSYS where the gripping
force was known. Once such image is shown in Figure 7.11(b). The tweezer was modeled
in ANSYS as a two dimensional object in plane stress with constant thickness. The clamp-
ing tube was modeled by applying a displacement boundary condition to the tweezer jaw
of a magnitude given by (7.15). Instead of applying a force to the tweezer jaw where the
object was being held, a part thickness was assumed that provided another displacement
boundary condition at the tip of the jaw. When this finite element model is solved the re-
action forces are given as a result. The reaction force where the object is being held is then
taken as the gripping force. This process was repeated for a series of increasing clamping
tube positions L2 with the same part thickness (much like the situation where a part is be-
ing gripped by gradually sliding the clamping tube in order to increase the gripping force).
When this series of images created by ANSYS is used as input to the vision algorithm, the
vision algorithm should return the same gripping force that was calculated by the finite ele-
ment model. Figure 7.12 shows the gripping force versus clamping tube position from both
the ANSYS model and VBFM algorithm applied to the images generated by the ANSYS
model.

Equations (7.17) - (7.19) can also be verified using the ANSYS model by solving for
the clamping force F as a function of the part thickness and the clamping tube position
(specifying a part thickness is in effect specifying the value of u at the point x = L1, once
these values are substituted into (7.17) - (7.19), F can easily be solved for in terms of the
remaining variables). Figure 7.12 also shows this force value predicted by equations (7.17)
- (7.19). It can be seen from the plot that ANSYS, the beam equations, and the vision
algorithm (which uses the beam equations for its deflection model) correspond closely.

Next, the vision algorithm was tested on the actual gripper. A piezoresistive force
sensor manufactured by SensorOne (model AE801) was used to validate the output of the
vision-based force sensing algorithm. The top of Figure 7.13 shows the experimental setup.
One jaw of the gripper applied force to the piezoresistive force sensor and the other applied
force to a rigid screw. The 1 σ precision of the vision algorithm applied to the micro-gripper
was found to be +/- 3.1 mN. The calibration error of the vision algorithm can be seen in
the bottom of Figure 7.13, where the output of the vision algorithm, along with the output
of the piezoresistive force sensor, is shown versus clamping tube position. The error in this
figure is due to errors in the material properties that were assumed for the gripper template.
This problem is not particular to vision-based force measurement. With piezoresistive force
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Figure 7.11: Micro-gripper manipulator on top, gripper ANSYS model center, and gripper
jaw deflection model on bottom.

sensing and laser-based optical force sensing, material properties are also assumed for the
object being deformed.

7.5 Conclusions

A method has been presented that reliably measures the force applied to an elastic object
through the use of computer vision. It was shown that, through the application of the
Dirichlet to Neumann map, the vision-based force measurement problem can be reduced
to that of measuring the displacement field of the contour of a deformed object. This
observation is important because it shows that boundary data is sufficient to completely
recover the force applied to an linearly elastic object independent of object geometry. For
nonlinear problems, the Dirichlet to Neumann map can often be modelled numerically and
the force measurement problem can be solved using the approach presented in this chapter.

Microassembly and biomanipulation require force sensing for success. VBFM provides
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Figure 7.12: Forces obtained from the ANSYS simulation, beam equation and vision algo-
rithm.

a means to measure forces by visually observing an elastic object. In the two examples
given here, the cantilever and the micro-gripper, the objects were not initially designed
to be used with VBFM, however, they were successfully used as force sensors with no
alterations. For the cantilever, a sensor resolution of +/- 2.8 nN was achieved, while for
the micro-gripper a resolution of +/- 3.1 mN was achieved. These specifications approach
resolutions that are achievable with piezoresistive transducers.
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Figure 7.13: Microgripper experimental setup on top and micro-gripper results on bottom.
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Chapter 8

Modeling Elastic Objects with Neural
Networks for Vision-Based Force
Measurement1

It was shown in the previous chapter that if an accurate model is available defining the
elastic behavior of an object, then the force applied to that object can be measured using
computer vision. Three cases exist where this explicit model based approach is not appro-
priate. The first case is for materials that exhibit nonlinear elastic properties where it is
computationally prohibitive to evaluate the model in real-time. This situation occurs when
there are large deflections or when the stress strain relationship for the material is nonlin-
ear. The second case occurs when an accurate material model is unavailable for an object.
Biological structures such as cells or organs are an example of a class of structures without
accurate material models. The third case is when a model is available for the object, but the
parameters that define the model, such as material properties or geometry, are not known
or are known to a low certainty. In this case, the difficulty with the model based approach
is in calibration.

For all three of these cases a neural network model approach to VBFM is preferable.
Figure 8.1 illustrates the neural network approach to VBFM. For the neural network ap-
proach, a sequence of images is taken under various loading conditions. This sequence of
images is then passed to the neural network training algorithm. Once the neural network

1 c©2003 IEEE. Reprinted, with permission, from ”Modeling elastic objects with neural networks for
vision-based force measurement,” Greminger, M.A., Nelson, B.J., IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2003.
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Figure 8.1: Diagram illustrating the learning approach to vision-based force measurement.

model is trained, it can then be used to measure forces from new images.

8.1 The Neural Network Elastic Material Model

A feed-forward two-layer neural network with the layout shown in Figure 8.2 is used. Each
hidden node has a logistic sigmoid activation function of the form

g(a) =
1

1 + exp(−a)
(8.1)

where a is the sum of all of the weighted inputs to the node. The output nodes have a linear
activation function that returns the sum of all of the node’s weighted inputs. The neural
network is represented in equation form by

yi = wiM+1 +
P
∑

j=1

[

g

(

vjD+1 +
D
∑

k=1

[vjkxk]

)

wij

]

(8.2)

where the neural network has D inputs, P hidden nodes, and N outputs. The hidden
layer weights are stored in the v matrix and the output layer weights are stored in the w

matrix. Neural networks of this type have the property that they are universal approximators
meaning that the neural network can approximate a general nonlinear function to arbitrary
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Figure 8.2: Neural network diagram.

accuracy provided that there are a sufficient number of hidden nodes [26].
The neural network elastic model presented in this chapter is structured so that given a

point (x, y) in the object and the load F applied to the object, the neural network returns
the deformed location (x′, y′) of the point. This process is shown Figure 8.3 for the two
dimensional case. The neural network has three inputs and two outputs. If more than one
load is being applied to the object, additional inputs can be added to the neural network. A
neural network model constructed in this manner completely defines the deformation of an
elastic object subject to an applied load F.

8.2 Neural Network Based Deformable Template Match-
ing Algorithm

The deformable template will be deformed according to the neural network elastic model.
The deformation model (2.5) becomes

u = D (r, {t}) = NeuralNetwork(r, F ) (8.3)

where NeuralNetwork(r, F ) represents the neural network material model. This model
returns the displaced location of the template edge pixel r due to the applied force F . The
error function (2.4) becomes
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Figure 8.3: Process of using a neural network elastic model to apply a load F to an object.

E(θ,X, F ) =
M
∑

i=1

‖r′i − wi‖
2 (8.4)

Minimizing the above error function, in addition to giving the position and orientation
of the object, gives the force F applied to the object. This is done by finding the applied
force F that, when applied to the template, causes the template to match the image.

8.3 Acquisition of Training Data and Network Training

As previously shown, the neural network elastic model has three inputs and two outputs.
The inputs are the x-y coordinates of a point in the undeformed object and the load applied
to the object. The outputs are the x-y coordinates of the same point in the deformed object.
Therefore, in order train the neural network it is necessary to obtain training pairs that
consist of the x-y coordinate of a point in the undeformed object, the force applied to the
object, and the x-y coordinate of the same point in the deformed object. Many such training
pairs are needed to adequately train the neural network. Training pairs are obtained for the
object subject to many loads representing the range of expected loads.
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Figure 8.4: BEM deformable tracking algorithm tracking the rubber torus object. Unde-
formed template on left and template fitted to deformed torus on right.

8.3.1 Obtaining Training Data

The training data pairs are obtained directly from images of the object under known loads.
By obtaining training data from images, a neural network model of the object is created
without using a material model for the object.

The BEM deformable body tracking algorithm described in Chapter 5 is used to obtain
the training data directly from images. The BEM tracking algorithm’s ability to track
general 2D deformations makes it well suited to this task. Images of the object under
various loads are used for training.

The left half of Figure 8.4 shows a deformed rubber torus under a known load along
with an undeformed BEM deformable template. The right half of this figure shows the
BEM template matched to the deformed rubber torus. This process is repeated for all of
the images used to train the neural network elastic model. The training images represent
the range of loads that are likely to be encountered by the object. Figure 8.5 shows the
training data obtained using the BEM tracking algorithm for the rubber torus object. In the
figure, the same edge points are shown for the undeformed torus, the torus under a 0.613 N
load and the torus under a 1.222 N load. When these point deformations are obtained for a
sufficient number of different loads, they are used to train the neural network elastic model.

8.3.2 Training the Neural Network

The neural network is trained using the error back-propagation method [26]. The success of
the training process depends on the number of training pairs that are used and the number
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Figure 8.5: Training data obtained for the rubber torus object under two different applied
loads.

of hidden nodes in the neural network model. If there are not a sufficient number of training
data pairs, the network may model the training data well, but it will not be able to perform
well for new loads that are not part of the training data. If there are not a sufficient number
of hidden nodes, the neural network will not be able to model the elastic object to a high
degree of accuracy. On the other hand, if there are too many hidden nodes, the neural
network will be able to model the training pairs well but it may be very inaccurate for loads
that are not part of the training data. This phenomenon is known as over-fitting [26]. In
general, the more training pairs that can be used the more accurate the model will be. The
number of hidden nodes used should be the minimum number that still achieves adequate
training. The number of hidden nodes is increased until adequate traing is achieved.

8.4 Experimental Results

8.5 Rubber Torus Application

The neural network tracking algorithm was first applied to the rubber torus object shown
in Figure 8.4 using the setup shown in Figure 8.6. The torus, because it is constructed
of rubber, has nonlinear elastic behavior. Therefore, it is not computationally feasible to

90



Figure 8.6: Rubber torus loading condition.

Figure 8.7: Neural network based deformable tracking algorithm applied the rubber torus
object. The undeformed template is on the left and template fitted to deformed torus is on
the right.

model the elastic behavior of this object accurately in real-time. A neural network was
trained directly from 39 images of the torus under loads varying from 0.00 and 0.84 N.
There are 70 hidden nodes in the neural network model. Once the training process was
completed, the neural network elastic model was used to predict the force applied to the
object visually as shown in Figure 8.7. This figure shows the torus being tracked with the
deformable template based on the neural network model.

This trained model was tested on 39 images that were not used in the training pro-
cess. Figure 8.8 shows a plot of vision-based force measurement versus applied load. The
average error in the vision-based force measurement is 10.7 mN.
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Figure 8.8: Neural network elastic model force measurement results for the rubber torus
object.

Figure 8.9: Microgripper.

8.6 Micro-gripper Application

The neural network modeling method was also applied to the microgripper shown in Figure
8.9. When this microgripper is used for a microassembly task it is important to measure the
gripping force that the microgripper applies to the object being held. In Chapter 7, VBFM
was applied to this gripper by modeling each jaw of the microgripper as a cantilever beam.
This model based approach required precise knowledge of the material properties and geo-
metric parameters of the microgripper. It also required a precise calibration of the camera
system so that deflections in pixel space can be converted into world space deflections.
The experimental setup shown in Figure 8.10 makes use of a piezoresistive force sensor to
measure the clamping force for the microgripper. Figure 8.11 shows a plot of force versus
clamping tube position for both the cantilever beam model based VBFM method and the
piezoresistive force sensor. The average error with this model based approach to VBFM
was 6.0 mN.

The neural network modeling approach can be applied to this microgripper avoiding
the need for precise knowledge of the parameters that define the microgripper or precise
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Figure 8.10: Experimental setup for measuring microgripper gripping force.

knowledge of the camera calibration parameters. Figure 8.12 shows a plot of force versus
tube position for both the neural network based force measurement and the piezoresistive
force sensor. The average error is 3.4 mN. Not only does the neural network modeling
approach avoid having to model the microgripper, it also provides a more accurate result.
The neural network approach is more accurate in this case because it is not necessary to
assume values for the material properties and geometry parameters of the microgripper.

8.7 Conclusions

A method to model the deformation of elastic objects through the use of artificial neural
networks has been presented. The neural network model can be incorporated into a de-
formable template matching algorithm to perform vision-based force measurement. This
technique is useful for objects that have complex material models or objects that can not be
accurately modeled with existing modeling techniques. It was also shown that this method
can be useful even when there is an available model for the object because the neural net-
work based method does not require knowledge of material properties or geometry. A
precisely calibrated camera system is also not needed with the neural network approach.

This learning by seeing method is particularly useful for the manipulation of biological
tissues or cells because it is difficult to accurately model such objects. These objects also
tend to be easily damaged if excessive load is applied, making force feedback essential.
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Figure 8.11: Cantilever beam model based VBFM results for the microgripper. The average
error is 6.0 mN.
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Figure 8.12: Neural network model based VBFM results for the microgripper. The average
error is 3.4 mN.
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Chapter 9

Deformable Object Tracking for
Microrobotics: A MEMS 4 DOF
Thermally Actuated Microgripper1

9.1 Introduction

Microrobotic systems are currently used for many applications in microassembly [9][53]
and in biomanipulation [7][46]. Microrobotic systems hold much promise. However, the
capabilities of these systems are limited when compared to their macroscale counterparts.
For example, microgrippers typically are limited to a single degree of freedom for both
actuation and feedback. Greater end effector dexterity and sensory feedback is required
to produce more advanced microrobotic systems. This chapter presents technology that
will help to increase capabilities of microrobotic systems by presenting a microgripper that
both provides increased dexterity and the potential for increased sensory feedback when
compared to previous designs.

In this chapter, a four degree of freedom bulk micromachined MEMS microgripper is
presented. Each jaw of the microgripper is a compliant mechanism with both an x and a y

degree of freedom. A bi-directional bending thermal actuator is used to actuate each degree
of freedom. The thermal actuator is able to bend in both directions because the electric
circuit is completed through the kinematic chain of the compliant mechanism. Therefore,

1 c©2005 IEEE. Reprinted, with permission, from ”A Four Degree of Freedom MEMS Microgripper with
Novel Bi-Directional Thermal Actuators,” Greminger, M.A., Sezen, A.S., Nelson, B.J., IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2005.
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the location of heating within the actuator can be controlled remotely by applying electrical
potential at the appropriate contacts.

Force feedback can also be provided for the microgripper design presented in this chap-
ter. Since compliant mechanisms are used to provide the motion of the gripper jaws, the
deformation of these compliant mechanisms can be tracked visually to provide force feed-
back through the use of vision-based force measurement. Force feedback can be provided
for each degree of freedom of the gripper. It was shown in Chapter 7 that vision-based force
measurement provides a robust and non-contact approach for providing force feedback in
microsystems.

This chapter is organized as follows. First the design of the microgripper is discussed
with the design of both the compliant mechanism and the design of the thermal actuators
are addressed. Next, the fabrication and instrumentation of the microgripper is presented.
The characteristics and performance of the devices and their actuators are presented next.
Finally, a deformable tracking algorithm based on a frame FEM model is presented.

9.2 Design

The design goal for this microgripper is for each gripper jaw to have both x and y degrees of
freedom. Typically, MEMS microgrippers only possess a single degree of freedom which
opens and closes the gripper. The addition of these three extra degrees of freedom gives
the gripper added dexterity.

A compliant mechanism is used for each jaw of the microgripper to give it the necessary
degrees of freedom. The compliant mechanism design is based off of a five-bar rigid link
mechanism. The design of the thermal actuators used to actuate the device is also discussed
in this section.

9.2.1 Mechanism Design

The design of the compliant mechanism for each jaw of the gripper is based off of a five-bar
mechanism design. A five-bar mechanism has two degrees of freedom. The input to the
mechanism is the rotation angle of each of the links attached to ground as shown in Figure
9.1. The position of the entire mechanism is completely determined by the position of these
two input links.

The design objectives for the compliant mechanism are to decouple each of the degrees
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Figure 9.1: Five-bar rigid link mechanism.

of freedom and to amplify the motion of the actuator inputs. The mechanism design that
is used for each jaw of the gripper is shown in Figure 9.2(a). The paths followed by the a
gripper jaw for each degree of freedom are shown in Figures 9.3(a) and (b). It can be seen
that the degrees of freedom are nearly completely decoupled.

A compliant mechanism is created from the rigid mechanism by using a compliant
member to approximate each pivot joint in the rigid link design. Each compliant member
is a flexible beam with the center point of the beam lying at the location of the pivot it
replaces. The length of each of the compliant members determines how closely the motion
of the compliant mechanism approximates that of the rigid link mechanism. The shorter
the compliant members, the closer the motion of the compliant mechanism matches that of
the rigid link mechanism. The drawback of short compliant links is that they experience
greater internal stresses for the same level of gripper motion when compared to longer
compliant members. Finite element simulations of the compliant mechanism were used to
evaluate the kinematic performance of the compliant mechanism as well as to insure that
the compliant members will not fail under normal operating conditions. Simulation results
for each degree of freedom are shown in Figures 9.3(c) and (d).

9.2.2 Actuator Design

Both electrostatic actuators and thermal actuators were considered as the source of actua-
tion for each degree of freedom of the microgripper. Thermal actuation was chosen for two
reasons. The first reason is that electrostatic actuators can not provide the forces necessary
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(a) (b) (c)

Figure 9.2: A compliant mechanism (c) based on a rigid link mechanism (a).

(a) (b)

(c) (d)

Figure 9.3: Degrees of freedom for the rigid link mechanism (a)(b) and the associated
compliant mechanism (c)(d).
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(c)

Figure 9.4: Common thermal actuator designs: (a) bending thermal actuator, (b) buckling
beam thermal actuator, and (c) bimorph thermal actuator.

to actuate the compliant mechanism without requiring excessive device area or extremely
high actuation voltages. Second, electrostatic actuators are most effective at providing
linear actuation whereas the gripper’s compliant mechanism requires a rotational input.
Bending thermal actuators naturally provide a rotational motion.

All thermal actuators deflect as the result of an applied thermal stress where heating
is generally provided by Joule heating. Thermal stresses arise in three situations: when
there is a nonhomogeneous temperature distribution in a structure; when there is a non-
homogeneous coefficient of thermal expansion and the temperature changes; and when
a structure is overly constrained and the temperature is changed thus causing buckling.
Thermal actuators using each of these mechanisms are currently implemented in MEMS
devices. The commonly used MEMS thermal actuators are shown in Figure 9.4. Figure
9.4(a) shows a thermal actuator that relies on nonuniform temperature distribution [17][19],
Figure 9.4(b) shows a thermal actuator based on the buckling principle [38][42], and Fig-
ure 9.4(c) shows a thermal actuator that relies on a nonhomogeneous coefficient of thermal
expansion [3][39]. The limitation of each of these designs is that they can only be actuated
in a single direction.

The thermal actuator design that is proposed here is shown in Figure 9.5. As can be
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Figure 9.5: The thermal actuator design introduced in this chapter.

seen from the figure, the actuator can be actuated in either direction depending on which
contacts electrical potential is applied. This is possible because the compliant mechanism
itself is used to close the electrical path, thus providing a return path for the current used to
heat the hot arm of the actuator. In order to control this type of an actuator with a computer,
an interface which converts the signal level voltages from the computer to currents has been
designed. This circuit is discussed in Section 9.3.2. The limitation of this type of actuator is
that it can only be used in a situation where the actuator is connected to a closed kinematic
chain. However, when a closed kinematic chain is being used, this design is superior to the
previous actuator technologies because it can be actuated in two directions.

The displacement of this actuator design can be estimated by modeling the actuator as
two parallel beams separated by an air gap. The beams are clamped on both ends as shown
in Figure 9.6(a). The properties of each of the beams are identical with the only difference
being the temperature. This temperature difference induces a stress which results in a
deflection of the beam. The actuator is in a state of pure bending when the beams are at
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different temperatures. The effective bending moment associated with this state of pure
bending is [36]:

M =
eEAα

2
(T2 − T1) (9.1)

where A is the cross sectional area of each beam, T1 and T2 are the temperatures of beams
1 and 2 respectively, e is the distance between the centers of the beams, and α is the co-
efficient of thermal expansion for both of the beams. The moment M is the moment that
would have to be applied to the end of the undeflected actuator to cause it to deflect the
same magnitude as when the temperatures of beam 1 and 2 are T1 and T2 respectively. The
radius of curvature ρ of the actuator is related to the bending moment by the following:

1

ρ
=

M

EI
=

eAα

2I
(T2 − T1) (9.2)

where I is the moment of inertia of both beams together and is defined as:

I = 2

(

bh3

12
+

Ae2

4

)

(9.3)

where h is the height of each beam and b is the depth of each beam. From the curvature of
the beam, the total deflection of the actuator can be calculated using the following equation
[55]:

δ =
l2

2ρ
=

eAαl2

4I
(T2 − T1) (9.4)

where l is the length of the actuator. It can be seen from the above equation that the deflec-
tion of the actuator is proportional to the temperature difference between the two beams.
The maximum actuation force can also be calculated in terms of the temperature difference
between the beams. The maximum force that the actuator can supply is equivalent to the
force F required to keep the end of the actuator from moving when a moment M of mag-
nitude (9.1) is applied to the end of the beam (see Figure 9.6(c)). The equation for F is
[55]:

F =
3EI

2lρ
=

3eEAα

4l
(T2 − T1) (9.5)

This is the force that the actuator can generate at zero deflection which is referred to as the
blocking force. The force that the actuator can generate decreases as the actuator travels
through its range of motion.
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Figure 9.6: Model used to calculate the displacement of the actuator and the maximum
force of the actuator.
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Figure 9.7: Fabrication sequence used to fabricate the microgripper.

9.3 Fabrication and Instrumentation

The microgripper is bulk micromachined from 100 µm thick <100> silicon with less than
0.01 Ohm-cm resistivity. This 100 µm silicon layer makes up the device layer of a silicon-
on-insulator (SOI) wafer which has a 2 µm silicon-dioxide box layer and a 250 µm thick
silicon handle layer. The oxide layer serves both as an etch stop layer during fabrication
and as an electrical insulator for the final device. Deep reactive ion etching (DRIE) is used
to create the microgripper’s features.

After the microgripper is fabricated it needs to be interfaced with a circuit to provide
current to actuate the thermal actuators. An interface circuit was designed so that voltages
from a digital to analog converter can be used to control the displacement of the actuators.

9.3.1 Fabrication Process

The fabrication sequence is outlined in Figure 9.7. The SOI wafer that forms the starting
point is shown in Figure 9.7(a). The first step is to etch the handle layer of the wafer using
DRIE (see Figure 9.7(b)). This step forms the frame and the support structure for the final
device. Figure 9.7(c) shows the next step which is to pattern the aluminum contacts that
are used to electrically connect the device to its control circuit. The next step is to etch
the device layer (see Figure 9.7(d)). The partions of the device layer that remains after
this etching step forms the geometry of the gripper jaws, the compliant mechanisms, and
the thermal actuators. Finally, the devices are released from the wafer by etching away the
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Figure 9.8: Interface circuit used to control the gripper with signal level voltage inputs.

exposed oxide (see Figure 9.7(e)). The oxide is etched using a plasma etcher.

9.3.2 Instrumentation

An interface circuit was implemented so that voltages from a digital to analog converter
can be used to control the motion of the gripper. The direction of actuation, and which
actuator is actuated depends on the path the electrical current takes through the device.
Transistors are used as gates to control this path. The state of the transistors determines
which of the two actuators is activated and the direction of actuation. A simplified version
of the interface circuit is is shown in Figure 9.8 for one jaw of the microgripper. The input
to the circuit is the gate voltage applied to each of the transistors. The input voltage is
boosted using noninverting summing amplifiers for the transistors on the high voltage side
of the circuit because the gate voltage required for these transistors is above signal levels.
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Figure 9.9: SEM image of the fabricated microgripper. This device is 6mm by 6mm in
size. The insets show a closeup of one of the thermal actuators.

The supply voltage to the circuit is 80 volts. The voltage required to actuate the device to
full scale deflection is 40 volts. The circuit runs at above 40 volts to account for voltage
drops at the gate transistors.

Shunt resisters are placed in series with each electrical contact of the device. The
voltage drop across each of these resisters is measured by a differential amplifier to provide
a voltage proportional to the current entering the device. These current measurements
are the output of the interface circuit and are used for two purposes. The first is to provide
feedback for the user of the device. The second is to provide feedback for a current limiting
circuit that is not shown. The current limiting circuit limits the maximum amount of current
that can be run through the device. The current limiting circuit protects the device from
being damaged by overheating. This limiting is important because in order to achieve the
most performance out of the thermal actuators it is desirable to operate them as hot as
possible without overheating them. Any control input can be sent to the device and the
current limiting circuit insures that the device will not be overheated.
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Figure 9.10: Image of fabricated microgripper. This device is 3 mm by 3 mm.

9.4 Actuation Results

Figure 9.9 shows an SEM image of a fabricated device. A microscope image of another
device is shown in Figure 9.10. This device has an overall size of 3 mm by 3 mm and is
used for the results presented in this chapter. Figure 9.11 shows the range of motion of
the microgripper jaws for each of their degrees of freedom. The opening and closing range
of motion for each gripper jaw is 38.4 µm, and the orthogonal range of motion for each
gripper jaw is 11.6 µm.

The motion of a thermal actuator is shown in Figure 9.12. The total range of motion
for this actuator is 12.7 µm. The actuator shown is 400 µm long, 100 µm deep, has beams
that are 4 µm thick, and has a 10 µm gap between the beams. Using (9.4), the amplitude
of deflection shown corresponds to a temperature difference of 578 ◦C between the hot
and cold beams. The maximum force that this actuator can produce is 1.9 mN, which is
calculated using (9.5).

For the results given here, the achievable actuator deflection was limited because the
compliant members of the compliant mechanism overheated before the actuator could reach
its maximum temperature. This is due to increased Joule heating of the compliant members
as compared to the thermal actuator beams. This occurs even though the actuator beams
and the compliant members were designed to have the same thickness. The compliant
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Figure 9.11: Range of motion for microgripper.

members are thinner in the final device because of the ununiform etching rate of DRIE.
The problem of compliant member heating can be solved in future designs by patterning a
metal conductor onto the compliant members. This fix would allow the actuators to reach
their maximum temperature without the concern that the compliant members will overheat.

9.5 Deformable Object Tracking Applied to the Micro-
gripper

Position and force feedback are needed for microgripper presented in this chapter to make
it useful for micromanipulation applications. Since the motion of the microgripper is based
on a compliant mechanism, the techniques that have been presented in this dissertation
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Figure 9.12: Actuator motion.

for tracking deformable structures can be used to provide position and force feedback. A
deformation model will be needed in order to perform the visual tracking necessary to pro-
vide this feedback. The boundary element method described in Chapter 5 could be used to
model the microgripper but a model this general is not required for the microgripper. All
of the deformation of the microgripper occurs in the springs. These springs can be very ac-
curately modeled as beams. Therefore, a frame finite element model which models elastic
objects as interconnected beam elements is a good choice for modeling the deformation of
the microgripper. The use of a frame finite element model as opposed to a general boundary
element model will greatly reduced the number of degrees of freedom that the model has.
This decrease in the number of degrees of freedom will lead to a faster and more robust
tracking algorithm.

9.5.1 The Frame Finite Element Model

The equations for general three dimensional linear elasticity are:

σij,j + fi = 0 (9.6)

108



Figure 9.13: Frame mesh shown superimposed on the right jaw of the microgripper. Circled
numbers label the elements and the other numbers label the nodes. Elements 1, 3, 5, 7, and
9 are assumed to be rigid.

σij = cijklεkl (9.7)

εij = u(i,j) (9.8)

where the indices take the values 1, 2, 3. The finite element method for frames simplifies
the above equations for general three dimensional linear elasticity. The domain of the
frame finite element problem is composed of a finite number of beam segments which are
connected at node points. Figure 9.13 shows the frame finite element mesh that is used to
model each jaw of the microgripper. It is assumed that each of the beams is prismatic with
a cross sectional area of Ae. A local coordinate system (xe

1, x
e
2, x

e
3) is defined for each beam

element where the xe
3 axis lies along the long axis of the beam segment (see Figure 9.14).

The stress components σ11, σ12, and σ22 in the beam segments are assumed to be zero.
The displacement ui of any point of a segment is defined by the following kinematic equa-
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Figure 9.14: Frame beam element.

tions [21]:

u1(x1, x2, x3) = w1(x3) − x2θ3(x3) (9.9)

u2(x1, x2, x3) = w2(x3) + x1θ3(x3) (9.10)

u3(x1, x2, x3) = w3(x3) − x1θ2(x3) + x2θ1(x3) (9.11)

where wi and θi are the displacement and rotation degrees of freedom respectively for each
frame node. These kinematic equations do not allow for warping of the plane sections of
the segments.

Applying these assumptions, the constitutive equation (9.7) becomes

σ33 = Eε33 (9.12)

σ13 = 2µε13 (9.13)

σ23 = 2µε23 (9.14)

where E is the modulus of elasticity and µ is the shear modulus of the frame segment
material. Applying the kinematic equations (9.9 - 9.11) the strain-displacement relationship
(9.8) becomes:
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ε13 =
∂w1

x3
− x2

∂θ3

x3
− θ2

2
(9.15)

ε23 =
∂w2

x3
+ x1

∂θ3

x3
+ θ1

2
(9.16)

ε33 =
∂w3

x3

− x1
∂θ2

x3

+ x2
∂θ1

x3

(9.17)

The finite element method is used to solve the elasticity equations for the frame FEM
model (equations (9.6), (9.12) - (9.17)). The finite element method casts the equations into
a variational form which can be solved by a matrix equation (see [21]). Linear shape func-
tions are used to interpolate the displacement degrees of freedom and Gaussian integration
is used to integrate each of the element equations. The matrix form of the frame finite
element model is

[K] {u} = {t} (9.18)

where [K] is the stiffness matrix, {u} is the nodal displacement and rotation vector, and
{t} is the nodal force and moment vector. Given a traction distribution {t} applied to the
frame finite element model, the nodal displacements can be found by solving the above
matrix equation.

9.5.2 Tracking the MEMS Microgripper using the Frame FEM De-
formation Model

The frame FEM deformation model described above is used to deform the template that is
used to track the MEMS microgripper. The error function (2.7) becomes

E(θ,X, {t}) =
M
∑

i=1

‖r′i − wi‖
2 (9.19)

where {t} is the vector of forces and moments applied to the frame FEM mesh of the
microgripper.

Figure 9.15 shows a tracking result using the frame FEM template described in this
Chapter. By deforming the template with a less general model than the BEM model, the
tracking is performed more quickly and more robustly than would otherwise be possible.
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Figure 9.15: Results tracking the MEMS microgripper using the frame FEM deformation
model to deform the template.

9.6 Conclusions and Discussion

A new gripper design has been presented that offers greater manipulation dexterity than is
currently available. It also introduces a novel thermal actuator design that takes advantage
of the closed kinematic chain design of the compliant mechanism to allow actuation in
two directions. A deformable object tracking algorithm was also introduced for tracking
the deformation of this microgripper in order to provide information for position and force
feedback. A frame FEM model was used to deform the template since the springs of the
microgripper are readily modeled using beam elements.

Improving the dexterity and the sensing capabilities of micromanipulators will greatly
enhance the cababilities of micromanipulation and biomanipulation systems. These capa-
bilities will allow the algorithms and techniques used in macromanipulation to be applied
to micromanipulation.
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Chapter 10

Conclusions and Discussion

10.1 Overview

This dissertation has presented a general method to track deformable objects in images. It
has been shown that tracking deformable objects can be used to provide position and force
feedback for microrobotic applications. These measurements can be made in situations
where traditional displacement sensing techniques cannot be used. These situations include
biomanipulation applications and non-invasive medical imaging applications. The use of
various material models has been demontstrated including the use of an artificial neural
network to learn the deformation models of objects with non-linear properties.

The robotic manipulation of deformable objects is becoming more important with the
emergence of robotic surgery. Also, the limitations of robotics in certain domains includ-
ing space robotics and microrobotics requires robotic manipulators that are flexible. Both
of these instances require feedback of the current state of the deformable object or of the
deformable manipulator. The high dimensional information that is available in images is
ideal for obtaining the shape of deformable structures which inherently have many degrees
of freedom. Computer vision will form a central role in the development of robots that
interact with deformable objects and the in the control of robots that are themselves de-
formable.
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10.2 Contributions to the State of the Art

Vision-Based Force Measurement: The primary goal of this work is to demonstrate the
feasibility of measuring forces from images and to implement an algorithm to do this mea-
surement accurately and robustly. Vision-based force measurement has been demonstrated
for a linearly elastic cantilever beam and a one degree of freedom microgripper where
forces were measured to a accuracy of +/- 2.8 nN and +/- 3.1mN respectively. Vision-based
force measurement was also demostrated for an object with nonlinear material properties
by using a neural network model to learn its material properties. For each of these test
cases, the results were compared to a traditional sensor in order to accurately assess the
performance of the vision-based approach.

Deformable Object Tracking Algorithm Robust to Occlusion and Spurious Edges: It
was demonstrated that the deformable object tracking algorithm presented in this disserta-
tion can be modified so that it is robust to two common sources of errors in image tracking:
occlusions and spurious edges. It was shown that deformable objects can be tracked even
in the presence of significant occlusion by using robust error measures. The problem of
spurious edges was handled by introducing a new modification to the Canny edge operator
that makes use of object intensity to eliminate spurious edges. These enhancements are crit-
ical for robotics applications where occlusions or spurious edges can arise without warning.

Introduction of a Modular Deformable Object Tracking Algorithm: The deformable
object tracking algorithm presented in this dissertation is the first to completely separate the
low-level vision routines, the deformation model, and the error minimization routine in a
modular way. This modularity will allow future researchers to easily add new deformation
models, make use of more robust edge detection algorithms, and make use of more efficient
numerical minimization algorithms. Previous deformable object tracking algorithms have
not been modular making them difficult to modify to solve new problems.

Four Degree of Freedom Microgripper: A new microgripper design was introduced
which has four degrees of freedom total where typical designs have a single degree of
freedom for opening and closing. These additional degrees of freedom provide added dex-
terity and allow for fine positioning once an object is grasped. The degrees of freedom are
provided by a compliant mechanism based off of the design of a rigid link five-bar mecha-
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nism. The compliant nature of this device also provides the opportunity to use deformable
object tracking to provide position and force feedback.

New Thermal Actuator Design Capable of Bi-Directional Actuation: Finally, a new
MEMS thermal actuator design was introduced that can be actuated in two directions. This
actuator is able to actuate in two directions by taking advantage of the closed kinematic
chain of the microgripper to complete the current path. Because of this characteristic, the
thermal actuator design introduced has double the range of motion of previous MEMS
thermal actuator designs.
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