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Abstract. We prove that a fixed configuration of N − 1 masses in the plane
can be extended to a central configuration of N masses by adding a specified

additional mass only in finitely many ways. This holds for a family of potential

functions including the Newtonian gravitational case and the classical planar
point vortex model.

1. Introduction. In the classical N -body problem, the acceleration due to New-
tonian gravity is:

ẍj =
∑
i6=j

mi(xi − xj)
r3ij

1 ≤ j ≤ N (1)

where xi ∈ R3 is the position of particle i, rij is the distance between xi and xj ,
and mi is the mass of particle i [22].

We will consider this generalized to

ẍj =
∑
i 6=j

mi(xi − xj)
rDij

1 ≤ j ≤ N (2)

corresponding to a central potential

U =
∑
i<j

mimj

rD−2ij

AlthoughD can be thought of as a real parameter, in this paper we will only consider
integerD ≥ 2. Newtonian gravitation corresponds toD = 3, while systems of planar
point vortices have been modelled with D = 2. In the vortex case, the potential
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function is logarithmic, U =
∑
i<j

mimj ln(rij)[11], and it makes physical sense for

the parameters mi to have negative values as well as positive, corresponding to both
directions of rotation.

Our restriction to integer D is due to our reliance on polynomial methods; it
would be interesting if a proof could be found for all real D ≥ 2.

A configuration is called central if there exists λ ∈ R such that

λ(xj − c) =
∑
i6=j

mi(xi − xj)
rDij

1 ≤ j ≤ N (3)

where c is the center of mass.
Central configurations are of interest for a number of reasons in the N -body

problem [18]. In general, they provide landmarks from which other dynamic or
global phenomena may be deduced.

While much is known about central configurations there are also many outstand-
ing questions. One of the most famous and interesting problems was first posed by
Chazy [5], and then garnered more attention from being posed in a textbook on
celestial mechanics by Wintner [27]. More recently, Smale highlighted it as the sixth
of his 18 problems for the 21st century [24]. The question is: for any N positive
masses are there finitely many planar central configurations up to symmetry?

One of the few results related to Smale’s problem which applies to any number of
bodies is Forrest Moulton’s theorem [21] on collinear central configurations: there
is exactly one central configuration for each ordering of N positive masses on a line.

Another result valid for any number of bodies, due to Richard Moeckel, is a
generic finiteness result for N bodies in RN−1 [20].

There is also a cluster of work on extending an N -body central configuration to
N + 1 bodies [28, 19, 26], using the implicit function theorem to continue a solution
with a zero mass to one or more small masses. Related to this is the result of
Lindstrom [16] that an N -body planar configuration (in the Newtonian case) can
be extended with a given positive mass in at most finitely many points (assuming
the configuration of the original N bodies is fixed).

In this paper we will generalize the result of Lindstrom to a generalized potential
and for an arbitrary given additional mass (any real value).

2. Tropical geometry. This section is a brief introduction to tropical geometry
which will be needed later. It is convenient to use multi-variable index notation.
A polynomial p in the polynomial ring C[x1, . . . , xn] will be written as

∑
v∈A avx

v

where A is a finite subset of Zn
≥0, v = (v1, . . . , vn), and av ∈ C\{0}. The Newton

polytope NP (p) of p is the convex hull of A. The initial form inw(p) with respect
to a weight vector w ∈ Rn is the sum of the avx

v such that w · v is maximal.
Geometrically, an initial form is the part of the polynomial lying on a face of its
Newton polytope.

The tropical variety T (p) of a single polynomial is the set of vectors w ∈ Rn

such that the inner product of w with elements of the Newton polytope NP (p) is
maximized on at least two vertices of NP (p). In other words, it is the set of vectors
w such that inw(p) is not a monomial.

Consider a set of polynomials P = {p1, . . . , pm} generating an ideal I = 〈P 〉 in
the polynomial ring. By the variety of I we mean V (I) = {x ∈ (C \ {0})n|p(x) =
0 ∀p ∈ I}. While we always have V (I) =

⋂
pi∈P V (〈pi〉) it is not always true that
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p∈I T (p) =

⋂
pi∈P T (pi). The first set,

⋂
p∈I T (p), is called the tropical variety of

the ideal I and is denoted T (I) while the second set,
⋂

pi∈P T (pi), is the tropical

prevariety of the set P . It is always true that T (I) is a subset of the tropical
prevariety of P . The Bieri-Groves theorem states that V (I) (as an algebraic variety)
and T (I) (as a polyhedral complex) have the same dimension [3, 25].

Because tropical varieties and prevarieties are invariant under positive scaling,
to determine that a variety in (C \ {0})n is finite i.e. that it is zero-dimensional, it
suffices to find a finite set of polynomials P ′ ⊆ I such that T (I) ⊆

⋂
p′i∈P ′

T (p′i) =

{0}. Then V (I) is either finite or empty.
Our argument will be slightly more advanced, as we will also use that the cone

over a tropical variety is a linear subspace of Rn.

Lemma 2.1. Let I ⊆ C[x1, . . . , xn] be an ideal. Then the non-negative span S of
T (I) is a linear subspace of Rn.

Proof. The set T (I) is the union of finitely many rational polyhedral cones in Rn.
This holds even when I is not homogeneous. See [12] for a proof. Consequently,
the non-negative span of T (I) is a rational polyhedral cone S.

Suppose for contradiction that S was not a linear space. Then S is a full-
dimensional cone inside spanR(S) and has a rational supporting hyperplane H with
S \ H 6= ∅. Therefore we may define a linear map π : Rn → R given by a matrix
with integral coefficients with π(S) = R≥0.

The final step of the proof requires properties of balancing of tropical varieties.
We refer to the upcoming book [17] for definitions and theorems. By [17, Theo-
rem 3.3.6] T (I) is balanced. Therefore the graph of π on T (I) is balanced. By [17,
Lemma 3.6.3] the projection π(T (I)) of the graph is balanced. However, π(S) = R≥0
implies that π(T (I)) = R≥0, which cannot be balanced.

For more extensive background on tropical varieties see [12] or [17]. Similar use of
tropical prevarieties is made in related problems in [9, 10, 14, 7, 8], where different
versions of the lemma above appeared. We should also note that closely related
techniques are used in proving a finiteness result in the five body problem in [2],
although with different notation and vocabulary.

3. Finiteness. We fix a configuration of N − 1 planar points qi ∈ R2 with real
masses m1, . . . ,mN−1, and consider the addition of qN with mass mN .

The main result of this paper is the following theorem:

Theorem 3.1. For each fixed configuration in the (N − 1)-body problem with
nonzero masses, there are at most finitely many relative equilibria points for an
additionally given (possibly zero mass) body, resulting in a nonzero total mass, for
any potential function

U =


∑

i<j
mimj

rD−2
ij

D > 2

∑
i<j mimj ln rij D = 2

where D is a positive integer greater than or equal to 2.

To prove the theorem we need to study equations in the rij and mi which are
known to be satisfied for central configurations. One such set of equations is the
Albouy-Chenciner equations [1]; a short derivation is given in [9]. In the following
we define an asymmetric version of these discovered by Gareth Roberts – see also [8].
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We require that the total mass
∑N

i=1mi 6= 0 because this is a necessary assumption
in deriving the Albouy-Chenciner equations.

Let Sik = r−Dik −1 for k 6= i and Sii = 0, and let Aijk = −r2jk +r2ik +r2ij for i 6= j.

Note that Aiji = 0 and Aijj = 2r2ij . For i 6= j the asymmetric Albouy-Chenciner
equations for N bodies can be written as

fij =

N∑
k=1

mkSikAijk = 0 (4)

In the formulas above we let rij = rji if i > j and will consider riN as variables
and all other rij and mi as parameters.

Because x1, . . . , xN ∈ R2, the three-dimensional volume of the convex hull of
any four of the points is zero. Therefore their Cayley-Menger determinant is also
zero [4]. We write the Cayley-Menger determinant for the points 1, 2, 3, and N ,
emphasizing the dependence upon the variables r1N , r2N , and r3N :

C(1, 2, 3, N) =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 r212 r213 r21N
1 r212 0 r223 r22N
1 r213 r223 0 r23N
1 r21N r22N r23N 0

∣∣∣∣∣∣∣∣∣∣
=

−2(r223)r41N − 2(r213)r42N − 2(r212)r43N

+2(−r212 + r213 + r223)r21Nr
2
2N + 2(r212 − r213 + r223)r21Nr

2
3N

+2(r212 + r213 − r223)r22Nr
2
3N + 2((r212 + r213 − r223)r223)r21N

+2((r212 − r213 + r223)r213)r22N + 2((−r212 + r213 + r223)r212)r23N

−2(r212r
2
13r

2
23)

The Newton polytope of this polynomial (again thinking of only r1N , r2N , and
r3N as variables) is a simplex, with vertices (4, 0, 0), (0, 4, 0), (0, 0, 4), and (0, 0, 0).
These vertices correspond respectively to the first three terms and the last term in
the polynomial above.

Let us denote the set of Cayley-Menger determinants involving the Nth point as
CN , i.e.

CN = {C(i, j, k,N)|1 ≤ i < j < k < N}
In a slight abuse of language, we will refer to the ray generated by a vector v as

‘the ray v’.

We will denote the vector of all ones as 1̄, that is 1̄ = (1, . . . , 1) =
∑N−1

i=1 ei,
where ei is the unit vector in the ith coordinate direction. Note that e1 corresponds
to the variable r1N , e2 to r2N , et cetera.

Lemma 3.2. The tropical prevariety
⋂

C∈CN T (C) ⊆ RN−1 defined by CN consists

of the origin, the rays −ei, the ray 1̄, cones −aei − bej with a, b > 0, and cones
b1̄− aei with b > 0, a ≥ 0.

Proof. The membership of the rays in the tropical prevariety is clear since the
Newton polytopes of the polynomials in CN are the simplices described above.

The cones are also straightforward to verify:
The cones of the form−aei−bej will be maximized on an edge ofNP (C(i, j, k,N)),

for any k, a 2-face for the Newton polytopes of polynomials C(i, k, l, N) or
C(j, k, l, N), and the entire simplex for NP (C(k, l,m,N)) where i, j /∈ {k, l,m}.
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The cones of the form b1̄−aei will be maximized on an edge of NP (C(i, j, k,N)),
and on a 2-face for NP (C(j, k, l, N)).

Now we need to show that no other vectors are in the tropical prevariety.
We first prove that vectors with two or more negative weights cannot be in the

tropical prevariety unless they have form −aei − bej with a, b > 0. In the other
case, after projecting to three coordinates, the vector is −aei−bej +cek with c 6= 0.
This vector will attain a unique maximum at a vertex of NP (C(i, j, k,N)) and can
therefore not be in the tropical prevariety.

If there is a single negative weight, then on a simplex NP (C(i, j, k,N)) involving
the negative weight variable the other two weights must be equal and non-negative.
Then we can consider other simplices involving the negative weight and one of the
two equal weights. The remaining weight must equal the non-negative weight. If
the equal weights are zero, we obtain a ray −ei. If the equal weights are positive,
then the weight vector must be in a cone b1̄− aei with a > b > 0.

If there are no negative weights, then the vector is either the origin or has at least
one positive weight. If there is a positive weight, consider the maximum weight.
On any simplex NP (C(i, j, k,N)) involving the maximum weight, there must be
another weight equal to it. This means there can be at most one weight less than
the maximum. This means the vector is of the form b1̄− aei with b > a ≥ 0.

The cones b1̄ − aei with b > a ≥ 0 and b1̄ − aei with a > b > 0 are included in
cones of the form b1̄− aei with b > 0, a ≥ 0.

We denote the set of asymmetric Albouy-Chenciner polynomials {pN1, pN2, . . . ,
pN(N−1)} by P. The polynomials pNj are defined as the numerators of the rational
functions (Laurent polynomials) fNj given in equation (4).

Lemma 3.3. The intersection of the tropical prevariety of CN , the tropical variety
of P, and the halfspace {w ∈ RN−1|w · 1̄ ≤ 0} is the origin.

Proof. By Lemma 3.2, we need only consider the following cases. For convenience
we will calculate with the Laurent polynomials fNi, rather than the polynomials
pNi, which does not affect the computation of the tropical prevariety.

For a weight vector w = −ei, i 6= N and k 6= N , we have

inw(SkN ) = inw(r−DkN − 1) =

 r−DkN of w-degree D if k = i

r−DkN − 1 of w-degree 0 if k 6= i

inw(ANik) = inw(−r2ik + r2kN + r2iN ) =

 2r2kN of w-degree -2 if k = i

r2kN − r2ik of w-degree 0 if k 6= i

If D > 2 then degw(mkSkNANik) is largest when k = i, and hence

inw(fNi) = inw(

N−1∑
k=1

mkSkNANik) = inw(miSiNANii) = 2mir
2−D
iN ,

a monomial.
If D = 2 then the case of w = −ei is a little more complicated, and we need to

construct a monomial from a combination of inw(fiN ) with inw(fjN ) for j 6= i. For
D = 2 we have for i and j 6= i:
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inw(fNi) = inw(

N−1∑
k=1

mkSkNANik) = 2mi +
∑
k 6=i

mkSkN (−r2ik + r2kN )

inw(fNj) = inw(

N−1∑
k=1

mkSkNANjk) = mir
−2
iN (−r2ij + r2jN ),

because ANjk has w-degree 0 for all k, whereas SkN has largest w-degree when

k = i. In that case inw(SkN ) = r−2iN .
We can combine the above initial forms to create a monomial:

miinw(fNi)−
∑
k 6=i

mkr
2
iNSkN inw(fNk) = 2m2

i .

For a weight vector w = −aei − bej with a, b > 0 and i 6= j, we can assume
without loss of generality that a ≥ b. We have

inw(SkN ) = inw(r−DkN − 1) =


r−DkN of w-degree Da if k = i

r−DkN of w-degree Db if k = j

r−DkN − 1 of w-degree 0 if k 6∈ {i, j}

inw(ANjk) = inw(−r2jk+r2kN+r2jN ) =


−r2jk of w-degree 0 if k = i

2r2jN of w-degree -2b if k = j

r2kN − r2jk of w-degree 0 if k 6∈ {i, j}
Hence degw(mkSkNANjk) is uniquely maximized at k = i and

inw(fNj) = inw(

N−1∑
k=1

mkSkNANjk) = inw(miSiNANji) = −mir
−D
iN r2ij .

For a weight vector w = b1̄− aei with a > b > 0, which will cover our last case,
we choose j 6= i and we have

inw(SkN ) = inw(r−DkN − 1) =

 r−DkN of w-degree (a− b)D > 0 if k = i

1 of w-degree 0 if k 6= i

inw(ANjk) = inw(−r2jk + r2kN + r2jN ) =


r2jN of w-degree 2b if k = i

r2kN + r2jN of w-degree 2b if k 6= i

Hence

inw(fNj) = inw(

N−1∑
k=1

mkSkNANjk) = inw(miSiNANji) = mir
−D
iN r2jN

a nonzero monomial.

Proof of Theorem 3.1:
This follows immediately from Lemma 3.3 and Lemma 2.1.
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