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Abstract. This article surveys some of the more aesthetically appealing and useful formulas
relating distances, areas, and angles in triangles and tetrahedra. For example, a somewhat ne-
glected trigonometric identity involving only the cosines of a triangle is an instance of the
famous Cayley cubic surface. While most of these formulas are well known, some novel iden-
tities also make an appearance.

Heron’s formula and the Cayley–Menger determinant. Many people learn in
school that for a triangle with vertices A, B, and C , the area of the triangle, �ABC, can
be computed from Heron’s formula [2, 13],

�ABC =
√

s(s − rAB)(s − rAC)(s − rBC) (1)

in which ri j is the distance between vertex i and vertex j , and s is the semiperimeter

s = rAB + rAC + rBC

2
.

Almost two thousand years later, a form of Heron’s formula was found that gen-
eralizes to simplices of any dimension. This is the Cayley–Menger determinant; for a
triangle:

−16�2
ABC = det

⎛
⎜⎜⎜⎝

0 1 1 1

1 0 r 2
AB r 2

AC

1 r 2
AB 0 r 2

BC

1 r 2
AC r 2

BC 0

⎞
⎟⎟⎟⎠

= −(−rAB + rAC + rBC)(rAB − rAC + rBC)(rAB + rAC − rBC)

× (rAB + rAC + rBC).

The matrix in the determinant is called the Cayley–Menger matrix. Cayley found
the determinantal form [7]—the polynomial itself was known earlier, by Lagrange.
Menger discovered a number of further properties of the matrix and closely related
variants of it [14]. For an n − 1-dimensional simplex of n vertices A1, . . . An , the
volume formula generalizes to

�2
A1...An

= (−1)n+1

2n(n!)2
det

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1

1 0 r 2
A1 A2

. . . r 2
A1 An

1 r 2
A1 A2

0 . . . r 2
A2 An

. . . . . . . . . . . . . . .

1 r 2
A1 An

r 2
A2 An

. . . 0

⎞
⎟⎟⎟⎟⎟⎠

. (2)

The definitive article about the Cayley–Menger matrix is [5], and its properties
are also nicely summarized in [4]. The use of distances as coordinates is masterfully
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investigated in [1] and, with particular attention paid to triangles, in [8]. Some uses
and variants of the Cayley–Menger determinant are discussed in [11, 12].

Laws of cosines. For brevity in some of the more complex formulae, we write cABC

for the cosine of the angle ABC.
The classic law of cosines is

r 2
AB − r 2

AC − r 2
BC + 2rACrBCcACB = 0.

One derivation of the law of cosines makes use of the relations of the form

rAB = rACcBAC + rBCcABC (3)

which can be used for many purposes because of their linearity in the distances
and cosines. These relations generalize to the n-dimensional simplex through the
polyhedral version of the divergence theorem. If we choose a vector field to be the
outward-pointing normal �ni to the i th facet of a bounded convex polyhedron, then
the divergence of the field is 0. This is equal to the surface integral

0 =
∑

j

�ni · �n j� j = �(i) −
∑

cij� j (4)

where ci j is the cosine of the angle between facets i and j , and �i is the area of the
i th facet. Multiplying this equation by �i and subtracting � j times the corresponding
equation for face j gives

�2
i =

∑
j �=i

�2
j − 2

∑
j,k �=i

cjk� j�k . (5)

While equation (5) has the same form as the law of cosines for triangles, it seems much
less useful since more than one cosine is involved in each equation. The lower degree
conditions in (4) are usually a better starting point for other identities.

A neglected trigonometric identity: the Cayley cosine cubic. If we think of the
equations (3) as linear in the distances, then the distances must be in the kernel of the
coefficient matrix, i.e.,

⎛
⎝

−1 cBAC cABC

cBAC −1 cACB

cABC cACB −1

⎞
⎠

⎛
⎝

rAB

rAC

rBC

⎞
⎠ = 0.

If we choose to normalize the kernel vector by setting rAB = 1, then

rAC = cBAC + cACBcABC

1 − c2
ACB

, and

rBC = cABC + cACBcBAC

1 − c2
ACB

which are complementary to the law of cosines in that they express a single distance in
terms of the cosines. Of course, these formulae break down if the triangle is collinear.
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In order to have a nontrivial kernel, the determinant must vanish, which gives us the
beautiful relation:

det

⎛
⎝

−1 cBAC cABC

cBAC −1 cACB

cABC cACB −1

⎞
⎠ = c2

ACB + c2
ABC + c2

BAC + 2cACBcABCcBAC − 1 = 0. (6)

This trigonometric identity has been known for a long enough time that it is difficult
to determine its first appearance. But it does not seem well known, and it is not usually
cited as an example of the famous Cayley cubic, a surface with the maximal number
(four) of isolated singular points (where both the surface and the gradient of its defining
function vanish). Perhaps we should call it the Cayley cosine cubic.

The four singular points of the Cayley cosine cubic are

(c123, c132, c213) ∈ {(1, 1, −1), (1, −1, 1), (−1, 1, 1), (−1, −1, −1)}.

The first three of these points correspond to collinear triangles, while the last one is
unrealizable as a triangle. However, it is consistent algebraically with a triangle whose
edge lengths add up to zero (rAB + rAC + rBC = 0). Intriguingly, this is the fourth factor
in the Cayley–Menger determinant as well.

The Cayley cosine cubic contains six lines that intersect the planes ci jk = ±1. The
three lines with ci jk = 1 are the boundary of the portion of the surface corresponding
to triangles with positive distances.

Figure 1. The Cayley cubic.

In a tetrahedron, these laws of cosines generalize in a variety of ways. There is
a Cayley cosine cubic for each of the four faces, involving the three facial cosines
(cosines between the edges of the tetrahedron).
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The Cayley cosine cubic determinant (6) generalizes directly to the dihedral angles
of a tetrahedron [3], where ci j is the cosine of the angle between faces i and j :

det

⎛
⎜⎝

−1 cAB cAC cAD

cAB −1 cBC cBD

cAC cBC −1 cCD

cAD cBD cCD −1

⎞
⎟⎠ = 0.

This formula may relate to a rigidity result [15] on tetrahedra, which states that if
all of the dihedral angles of a tetrahedron are less than or equal to the corresponding
angles of another tetrahedron, then the two tetrahedra must be similar.

The dihedral angles can be computed in terms of facial cosines at a vertex. For each
dihedral angle, there are two choices for the vertex. For instance, the cosine of the
dihedral angle between faces A and B can be expressed as

cAB = cADB − cADCcBDC

sADCsBDC
= cACB − cBCDcACD

sBCDsACD

from which we can eliminate the sines by squaring and substituting the Pythagorean
identity to obtain a relation between the facial cosines:

(1 − c2
ACD)(1 − c2

BCD)(cADB − cADCcBDC)2

= (1 − c2
ADC)(1 − c2

BDC)(cACB − cBCDcACD)2. (7)

For each of the six edges of the tetrahedron, we have such an equation. These cannot
be independent since the space of similarity classes of tetrahedra is five-dimensional.

Somewhat similarly, the law of sines can be used once for each triangular face to
obtain the identity

sACBsBDCsCADsABD = sBACsCBDsACDsADB,

which could be converted into a cosine identity by squaring both sides. This is some-
what unsatisfactory, however, since it involves eight angles.

If a geometric problem can be cast into polynomial form, the computation of a
Gröbner basis (or bases) provides an automated path for eliminating variables and
obtaining new or simpler relations [6] (caveat emptor: in practice, many Gröbner bases
require excessive memory and computational time to compute). It is beyond the scope
of this article to describe Gröbner bases in full. They are analogous to the reduction of
a linear system to echelon form (Gaussian elimination), but for polynomial (nonlinear)
systems. For more background on Gröbner bases, see [9].

By computing a Gröbner basis for the system of equations (4) for a tetrahedron
(using Singular [10]), we found a fairly simple condition on the six angles bordering
one face. The six angles are on three faces but do not include any of the three angles
meeting at the common vertex. For a common vertex A, this condition is

c2
ACBc2

ADCc2
ABD − c2

ADBc2
ABCc2

ACD + c2
ADBc2

ABC − c2
ACBc2

ADC

− c2
ACBc2

ABD − c2
ADCc2

ABD + c2
ADBc2

ACD + c2
ABCc2

ACD + c2
ACB

− c2
ADB − c2

ABC + c2
ADC + c2

ABD − c2
ACD = 0.
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If we use the squares as variables, i.e., let qi jk = c2
i jk , then there are nine singular

planes corresponding to collinear configurations, along with the origin. This singular
point at the origin could be interpreted as a projective closure having point A at infinity.

This can be written in a nicer form:

det

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 c2
ABC c2

ABC

1 c2
ACD 1 c2

ACD

1 c2
ADB c2

ADB 1

⎞
⎟⎟⎟⎠ = det

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 c2
ACB c2

ACB

1 c2
ADC 1 c2

ADC

1 c2
ABD c2

ABD 1

⎞
⎟⎟⎟⎠ . (8)

This determinantal form was found by an ad hoc approach. Is there an elementary
way to derive this identity? We do not know of one, but it seems likely.
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