Classify the following ODEs as linear, separable, and/or degree-homogeneous, and indicate their order. If possible, find the general solution to each (in some cases only an implicit solution is possible).

1. \(x \frac{dy}{dx} + xy = 1 - y. \)

 Solution: This is a linear first-order equation. The integrating factor \(\mu = xe^x, \) and the general solution is \(y = Ce^{-x}/x + 1/x. \)

2. \((e^x + 1) \frac{dy}{dx} = y - ye^x. \)

 Solution: This is linear and separable. The easiest way to do the hardest integral that appears (\(\int \frac{1-e^x}{1+e^x} dx \)) is to use the hyperbolic trig functions \(\cosh(x) = (e^x + e^{-x})/2 \) and \(\sinh(x) = (e^x - e^{-x})/2, \) although it is also possible just using the u-substitution \(u = 1 + e^x. \) In terms of \(\cosh \) the solution is \(y = C/(\cosh(x/2))^2, \) or \(y = \frac{4C}{e^x + e^{-x} + 2}. \)

3. \(\frac{dy}{dx} = e^{x+y}. \)

 Solution: This is separable, since \(e^{x+y} = e^x e^y. \) After separating and integrating, we get \(-e^{-y} = e^x + C. \) Solving for \(y \) we get \(y = \ln(-e^x - C). \) Every solution blows up after some finite \(x \) interval since the logarithm’s argument will become zero.

4. \(\frac{dy}{dx} = \frac{x^2 + y^2}{x^2}. \)

 Solution: This is degree-homogeneous so we use the substitution \(v = y/x, \) or \(vx = y. \) Differentiating this gives us \(y' = v + xv'. \) Substituting these relations gives a new ODE for \(v, v + xv' = 1 + v^2, \) or \(v'(v^2 - v + 1) = 1/x. \) This is separable. The left-hand integral is somewhat difficult; after a linear change of variables \(u = (2\sqrt{3}v - \sqrt{3})/3 \) it becomes an arctan integral and we get

 \[
 \frac{2\sqrt{3}}{3} \arctan\left(\frac{2v\sqrt{3} - \sqrt{3}}{3}\right) = \ln(x) + C.\]

 After substituting \(v = y/x \) back in, this becomes the implicit solution

 \[
 \frac{2\sqrt{3}}{3} \arctan\left(\frac{2y\sqrt{3} - x\sqrt{3}}{3x}\right) = C + \ln(x)
 \]

 which can be solved for \(y \) to get

 \[
 y = \sqrt{3}x \tan\left(\frac{\sqrt{3}(C + \ln(x))}{2}\right) / 2 + x/2.
 \]