Math 3280 Practice Midterm 2

The test will primarily cover chapters 4,5 , and 6 , although some material from earlier chapters might be involved (determinants in chapter 3.6 for example). The actual midterm will have 3 or 4 required questions. One sheet of notes and a calculator are allowed - however you must indicate the use of a calculator, and you must show the steps in your calculations for full credit.
(1) Find the general solution to the ODE: $y^{(3)}-5 y^{\prime \prime}+12 y^{\prime}-8 y=0$.
(2) Find the solution to the initial value problem $y^{\prime \prime}-2 y^{\prime}+5 y=e^{2 x}, y^{\prime}(0)=0$, $y(0)=-1$.
(3) Write down the form of a particular solution y_{p} of the ODE $y^{\prime \prime}+y=x^{2} e^{x}+\cos (x)$. You do not have to determine the coefficients of the functions.
(4) If an $n \times n$ matrix A has the property that $A^{3}=2 A$, what are the possible values of the determinant of A ?
(5) Solve the initial value problem $y^{\prime \prime \prime}-27 y=e^{3 x}, y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$.
(6) Rewrite the initial value problem $y^{\prime \prime \prime}+y^{\prime \prime}+y=t, y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$ as an equivalent first-order system.
(7) Indicate whether each of the following statements is true or false.
(a) The set of solutions $(x, y, z) \in \mathbb{R}^{3}$ to the equation $x+y+z=0$ is a vector subspace of \mathbb{R}^{3} of dimension 2 .
(b) The set of solutions $(x, y, z) \in \mathbb{R}^{3}$ to the equation $x+y=1$ is a vector subspace of \mathbb{R}^{3} of dimension 2 .
(c) The set of solutions to the differential equation $y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ is a vector space of dimension 2 .
(d) The set of solutions $(x, y, z) \in \mathbb{R}^{3}$ of the system below is a vector subspace of \mathbb{R}^{3} of dimension 1 .

$$
\begin{aligned}
x+2 y+3 z & =0 \\
4 x+5 y+6 z & =0 \\
7 x+8 y+9 z & =0
\end{aligned}
$$

(e) The polynomials $1+x, 1-x, 1+x^{2}$ are a basis for the vector space of polynomials with real coefficients of degree less than or equal to 2 .

