Math 3280 Worksheet 39: Solving initial value problems with Laplace transforms

Group members (2 to 4):
(1) Solve the initial value problem $x^{\prime \prime}+x^{\prime}-2 x=t, x(0)=x^{\prime}(0)=0$ using the Laplace transform. If you have time, check your work using other methods (characteristic equation and undetermined coefficients). A table of Laplace transforms is given on the back of this sheet.

Function $f(t)$	Transform $\mathcal{L}(f(t))=F(s)$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
$t^{n}(n$ is a non-negative integer $)$	$\frac{n!}{s^{n+1}}$
$t^{a}(a>-1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$
$e^{k t}$	$\frac{1}{s-k}$
$\cos (k t)$	$\frac{s}{s^{2}+k^{2}}$
$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}$
$-t f(t)$	$F^{\prime}(s)$
$\int_{0}^{t} f(\tau) d \tau$	$F(s) / s$
$f^{\prime}(t)$	$s F(s)-f(0)$
$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$

TABLE 1. Some Laplace transforms, $\mathcal{L}(f(t))=F(s)$

