Please let me know if you think you have found an error in these solutions.
(1) Find a basis for the subspace of solutions to the linear system

$$
\begin{gathered}
2 y+z=0 \\
x+6 y-z=0
\end{gathered}
$$

Solution: The main step is to row reduce the coefficient matrix:

$$
\begin{gathered}
\left(\begin{array}{rrr}
0 & 2 & 1 \\
1 & 6 & -1
\end{array}\right) \xrightarrow{\text { Swap } R_{1}, R_{2}}\left(\begin{array}{rrr}
1 & 6 & -1 \\
0 & 2 & 1
\end{array}\right) \xrightarrow{-3 R_{2}+R_{1}}\left(\begin{array}{rrr}
1 & 0 & -4 \\
0 & 2 & 1
\end{array}\right) \\
\xrightarrow{R_{2} / 2}\left(\begin{array}{rrr}
1 & 0 & -4 \\
0 & 1 & 1 / 2
\end{array}\right)
\end{gathered}
$$

Now for any solution to the system we can write the pivot variables x and y in terms of the free variable z :

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
4 z \\
-z / 2 \\
z
\end{array}\right)=z\left(\begin{array}{r}
4 \\
-1 / 2 \\
1
\end{array}\right)
$$

which implies that $\left\{\left(\begin{array}{c}4 \\ -1 / 2 \\ 1\end{array}\right)\right\}$ is a basis for the solution space.
(2) Find the general solution to $y^{(4)}+6 y^{\prime \prime \prime}+13 y^{\prime \prime}=0$.

Solution: The characteristic equation factors:

$$
r^{4}+6 r^{3}+13 r^{2}=r^{2}(r-(-3+2 i))(r-(-3+2 i))=0
$$

(the complex roots could be found using the quadratic equation after factoring out the r^{2}).

So there is a double root at 0 and complex conjugate roots $-3 \pm 2 i$. This means the general solution is

$$
y=C_{1}+C_{2} t+C_{3} e^{-3 t} \cos (2 t)+C_{4} e^{-3 t} \sin (2 t)
$$

(3) Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}=3+4 \sin (2 t), y(0)=0, y^{\prime}(0)=2$.

Solution: The characteristic equation is $r^{2}+2 r=r(r+2)=0$, with roots 0 and -2 . So the homogeneous solutions is $y_{c}=C_{1}+C_{2} e^{-2 t}$.

Normally we would choose a particular solution of the form $A+B \sin (2 t)+C \cos (2 t)$, but since the constant A is contained in the homogeneous solution we multiply it by t to get $y_{p}=A \sin (2 t)+B \cos (2 t)+C t$.

Next we compute

$$
y_{p}^{\prime \prime}+2 y_{p}^{\prime}=(-4 A-4 B) \sin (2 t)+(4 A-4 B) \cos (2 t)+2 C=3+4 \sin (2 t)
$$

so $2 C=3,-4 A-4 B=4$, and $4 A-4 B=0$. These are solved (by row-reduction or substitution or inspection) to get $A=B=-1 / 2$, and $C=3 / 2$.

So the solution is

$$
y=y_{c}+y_{p}=C_{1}+C_{2} e^{-2 t}-\sin (2 t) / 2-\cos (2 t) / 2+3 t / 2 .
$$

Plugging in the initial conditions to y and y^{\prime} at $t=0$ gives us the equations

$$
C_{1}+C_{2}-1 / 2=0, \quad-2 C_{2}+1 / 2=2 .
$$

So $C_{2}=-3 / 4$ and $C_{1}=5 / 4$.
The solution to the initial value problem is therefore

$$
y=\frac{5}{4}-\frac{3}{4} e^{-2 t}-\frac{1}{2} \sin (2 t)-\frac{1}{2} \cos (2 t)+\frac{3}{2} t
$$

(4) Use the method of variation of parameters to find the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=$ $t^{-2} e^{-2 t}$.

First we solve the associated homogeneous problem, which has characteristic polynomial $r^{2}+4 r+4=(r+2)^{2}$. The double root at -2 means that $y_{c}=C_{1} e^{-2 t}+C_{2} t e^{-2 t}$. We can use $y_{1}=e^{-2 t}$ and $y_{2}=t e^{-2 t}$ as a basis for the homogeneous solution space.

The Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
W=\operatorname{det} & \left(\begin{array}{ll}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 t e^{-2 t}
\end{array}\right)=e^{-2 t} \operatorname{det}\left(\begin{array}{ll}
1 & t e^{-2 t} \\
-2 & e^{-2 t}-2 t e^{-2 t}
\end{array}\right) \\
& =e^{-4 t} \operatorname{det}\left(\begin{array}{ll}
1 & t \\
-2 & 1-2 t
\end{array}\right)=e^{-4 t}-2 t+2 t=e^{-4 t}
\end{aligned}
$$

The particular solution is $y_{p}=u_{1} y_{1}+u_{2} y_{2}$; with $f(t)=t^{-2} e^{-2 t}$ we have

$$
\begin{gathered}
u_{1}=-\int \frac{y_{2} f}{W} d t=-\int 1 / t d t=-\ln (t) \\
u_{1}=\int \frac{y_{1} f}{W} d t=\int 1 / t^{2} d t=-1 / t
\end{gathered}
$$

and $y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\ln (t) e^{-2 t}-e^{-t}$.
Since $-e^{-t}$ is a part of the homogeneous solution, we do not need to include it in y_{p}.

So the general solution is

$$
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t}-\ln (t) e^{-2 t}
$$

