Math 3280 Assignment 4, due Thursday, July 11th.

This assignment covers material from Section 3.7 through 5.3.

- (1) Find a quadratic polynomial $a_2x^2 + a_1x + a_0$ whose graph passes through the points (1,3), (2,3), and (4,9).
- (2) Determine whether the vectors (0, 2) and (0, 5) are linearly dependent or independent.
- (3) Express w = (1, 2) as a linear combination of u = (-1, -1) and v = (2, 1).
- (4) Calculate the determinate of the matrix whose columns are u, v, and w to determine if u, v, and w are linearly independent or not, with u = (-2, -5, -4), v = (5, 4, -6), and w = (8, 3, -4).
- (5) Is the subset $W = \{(x, y, z) \mid y \ge 0\} \subset \mathbb{R}^3$ a vector subspace of \mathbb{R}^3 ? Explain why or why not.
- (6) Is the subset $W = \{(x, y, z) \mid y = 0\} \subset \mathbb{R}^3$ a vector subspace of \mathbb{R}^3 ? Explain why or why not.
- (7) Is the subset $W = \{(x, y, z) \mid z = 1\} \subset \mathbb{R}^3$ a vector subspace of \mathbb{R}^3 ? Explain why or why not.
- (8) If W is the subset of all vectors (x, y) in \mathbb{R}^2 such that |x| = |y|, is W a vector subspace or not?
- (9) Suppose that x_0 is a solution to the equation Ax = b (where A is a matrix and x and b are vectors). Show that x is a solution to Ax = b if and only if $y = x x_0$ is a solution to the system Ay = 0.
- (10) Determine whether the vectors $v_1 = (3,0,1,2)$, $v_2 = (1,-1,0,1)$, and $v_3 = (4,2,2,2)$ are linearly independent or dependent. If they are linearly dependent, find a non-trivial combination of them that adds up to the zero vector.
- (11) Find a basis for the subspace of \mathbb{R}^3 given by x 2y + 7z = 0.
- (12) Find a basis for the subspace of \mathbb{R}^3 given by x=z.
- (13) Find a basis for the subspace of all vectors (x_1, x_2, x_3, x_4) in \mathbb{R}^4 such that $x_1 + x_2 = x_3 + x_4$.

The following two questions are about subsets of the set of real-valued functions of the real line. We will call this set \mathcal{F} .

- (14) Is the subset of \mathcal{F} with the property that f(0) = 0 a vector space?
- (15) Is the subset of \mathcal{F} with the property that f(-x) = -f(x) for all x a vector space?
- (16) Compute the Wronskian of $f_1 = e^{-x}$, $f_2 = \cos(x)$ and $f_3 = \sin(x)$ to determine whether these three functions are linearly independent on the real line.

- (17) Solve the initial value problem y'' 4y = 0, y(0) = 4, y'(0) = 2 given that $y_1 = e^{2x}$ and $y_2 = e^{-2x}$ are both solutions to the ODE.
- (18) Find the general solution to y'' + 6y' = 0.
- (19) Find the general solution to 4y'' + 4y' + y = 0.
- (20) For what second-order constant coefficient linear homogeneous ODE would $y = C_1 + C_2 x$ be the general solution?
- (21) Show that the functions 3x, $2x^2$, and $5x 8x^2$ are linearly dependent by finding a linear combination of them that equals zero.
- (22) Find the general solution to y'' + 10y' + 25y = 0.
- (23) Find the general solution to $y^{(4)} 6y^{(3)} + 9y'' = 0$.