Math 3280 Assignment 6, due Thursday, July 25th.

Find the eigenvalues and eigenvectors of the following matrices:

 $(1) \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \qquad (2) \begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix}$ $(3) \begin{pmatrix} 2 & 0 & 0 \\ 5 & 3 & -2 \\ 2 & 0 & 1 \end{pmatrix} \qquad (4) \begin{pmatrix} 3 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $(5) \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix} \qquad (6) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Find a matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix, for the following matrices if such a P exists.

	$\begin{pmatrix} 0 \end{pmatrix}$	1	0		$\left(1 \right)$	0	0	1
(7)	-1	2	0		0	1	0	1
	-1	1	1	(8)	0	0	1	1
	`		,		0	0	0	2)

- (9) Show that if A is invertible and λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1} . Are the eigenvectors the same?
- (10) By computing the eigenvalues and eigenvectors of $A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$ find a matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix. Use this diagonalization to compute A^6 .
- (11) Find the general solution to the system $x'_1 = x_1 + 2x_2$, $x'_2 = 2x_1 + x_2$. Sketch some of the solutions near the origin, including some that start on the lines spanned by the eigenvectors of the coefficient matrix of the system.
- (12) Find the general solution to the system $x'_1 = x_1 + 2x_2$, $x'_2 = 3x_1 + 2x_2$.
- (13) Find the general solution to the system $x'_1 = x_1 5x_2$, $x'_2 = x_1 x_2$. Sketch some of the solutions near the origin.
- (14) Solve the initial value problem $x'_1 = x_1 + 2x_2, x'_2 = -2x_1 + x_2, x_1(0) = 1, x_2(0) = 0.$
- (15) Find the error between the exact values of $x_1(1)$ and $x_2(1)$ and an approximation using Euler's method for the initial value problem $x'_1 = 9x_1 + 5x_2$, $x'_2 = -6x_1 - 2x_2$, $x_1(0) = 0$, $x_2(0) = 1$.

- (16) Suppose two 50 liter tanks are connected by two pumps which transfer 10 liters/minute of fluid from each tank to the other. Suppose that the first tank initially contains 50 liters of brine at a concentration of 0.2 kg of salt per liter, and the other tank contains 50 liters of pure water.
 - (a) Find the amount of salt in each tank as a function of time (you can assume that the tanks are well-stirred).
 - (b) How long will it take for the amount of salt in the second tank to be within 1% of the amount of salt in the first tank?
- (17) Find the general solution of x' = Ax if

$$A = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 4 & 4 \end{array}\right)$$

For the next three problems, consider two blocks of mass m_1 and m_2 connected by springs to each other and to walls as shown below. The displacement of the masses from their equilibrium positions are denoted by x_1 and x_2 . The stiffness of the three springs are k_1 , k_2 , and k_3 as shown. Compute the natural frequencies and describe the natural modes of oscillation in each of the three following cases:

(18) $k_1 = k_2 = 4$ and $k_3 = 2$, and $m_1 = 2$, $m_2 = 1$.

(19)
$$k_1 = k_3 = 1$$
 and $k_2 = 4$, and $m_1 = m_2 = 1$.

(20) $k_1 = k_3 = 0$ and $k_2 = 4$, and $m_1 = m_2 = 1$.

