Math 3298 Practice Final
This is roughly 50% longer than the actual exam.

(1) Reverse the order of integration for the integral
\[\int_0^1 \int_x^1 \int_0^y f(x, y, z) \, dz \, dy \, dx. \]

(2) Compute the vector line integral
\[\int_C \vec{F} \cdot d\vec{r} \] where \(C \) is the path \((\pi t, \pi t^2), t \in [0, 1]\), and \(\vec{F} = (1 + y \sin(x) + \sin(y), x \cos(y) - \cos(x)) \).

(3) Find the linearization of \(f(x, y) \) at \((x, y) = (0, 1)\) if \(f = h(u(x, y), v(x, y)) \) and \(\nabla h\big|_{(1, 1)} = (\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v})\big|_{(1, 1)} = (2, 3) \), \(u(x, y) = x + y \), and \(v(x, y) = y^2 \).

(4) Find the surface area of the torus parameterized by \(x = (2 + \cos(v)) \cos(u) \), \(y = (2 + \cos(v)) \sin(u) \), \(z = \sin(v) \), with \(u \in [0, 2\pi] \) and \(v \in [0, 2\pi] \).

(5) Find the maxima and minima of \(f(x, y) = \frac{1}{x} + \frac{2}{y} \) on the set \(\frac{1}{x^2} + \frac{1}{y^2} = 1 \).

(6) Find the volume of the solid wedge bounded by the planes \(z = 0 \) and \(z = -y \) and the cylinder \(x^2 + y^2 = 4 \) (with \(y \geq 0 \)).

(7) Use Green’s Theorem to find the smooth, simple, closed and positively oriented curve in the plane for which the line integral \(\oint_C (x^2 y^4 + y^3) \, dx + x \, dy \) has the largest possible value.

(8) Compute the value of \(\int_S (\nabla \times \vec{F}) \cdot \vec{n} \, dS \) where \(S \) is the upper half of the ellipsoid \(4x^2 + 9y^2 + 36z^2 = 36 \), \(z \geq 0 \), with upward pointing normal, and \(\vec{F} = (y, x^2, (x^2 + y^2)^{3/2} e^{xyz}) \).

(9) Let \(\vec{r}(t) \) be a curve in space with unit tangent, normal, and binormal vectors \(\vec{T}, \vec{N}, \) and \(\vec{B} \). Show that \(\frac{d\vec{B}}{dt} \) is perpendicular to \(\vec{T} \).