(1) Find the (implicit) equation for the tangent plane to the surface $\vec{r}=\left(u^{2}, v^{2}, u v\right)$ at the point $(1,1,1)$.
(2) Compute the surface flux integral $\iint_{S} \vec{F} \cdot d \vec{S}$ where S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$ and $\vec{F}=(x, 2 y, 3 z)$.
(3) Compute the surface flux integral $\iint_{S} \vec{F} \cdot d \vec{S}$ where S is the portion of the cylinder $x^{2}+y^{2}=1$ between the planes $z=0$ and $z=1$, with outward pointing normal, and $\vec{F}=(x, y, z)$.
(4) Use Stokes' Theorem to compute $\iint_{S} \nabla \times \vec{F} \cdot d \vec{S}$ where $\vec{F}=\left(2 y \cos (z), e^{x} \sin (z), x e^{y}\right)$ and S is the upper hemisphere of $x^{2}+y^{2}+z^{2}=9$ with upward-pointing normal (i.e the z-component is positive).
(5) Suppose that C is a simple closed curve in the plane $x+y+z=1$, positively oriented with respect to the normal vector $(1,1,1)$. Compute the line integral $\oint_{C}(z, 2 x,-y) \cdot d \vec{r}$ in terms of the area enclosed by C.
(6) Use Stokes' Theorem to compute $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(x^{2} y, x^{3} / 3, x y\right)$ and C is the intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1 . C$ is oriented counter-clockwise when viewed from above.
(7) Use the divergence theorem to write the volume of a three-dimensional region R as a surface flux integral.
(8) Determine the sign of the divergence of the vector field in the figure below at the indicated points P_{1} and P_{2}.

