ASSIGNMENT 10, DUE WEDNESDAY, APRIL 20TH

(1) Find the (implicit) equation for the tangent plane to the surface 7" = (u?, v?, uv)
at the point (1,1,1).

(2) Compute the surface flux integral [ [, F-dS where S is the cube with vertices
(£1,+1,41) and F = (z, 2y, 32).

(3) Compute the surface flux integral [ [ F - dS where S is the portion of the
cylinder 22 + y?> = 1 between the planes z = 0 and z = 1, with outward
pointing normal, and F' = (x,y, 2).

(4) Use Stokes’ Theorem to compute [ [, VxF - dS where F' = (2y cos(z), e” sin(z), ze)
and S is the upper hemisphere of 2% +y?+2? = 9 with upward-pointing normal
(i.e the z-component is positive).

(5) Suppose that C' is a simple closed curve in the plane x + y + z = 1, positively
oriented with respect to the normal vector (1,1,1). Compute the line integral
$o(2, 2z, —y) - dF in terms of the area enclosed by C'.

(6) Use Stokes’ Theorem to compute §,, F - di where F = (2%, 23/3,zy) and C
is the intersection of the hyperbolic paraboloid z = 3? — 22 and the cylinder
2?2 +y? = 1. C is oriented counter-clockwise when viewed from above.

(7) Use the divergence theorem to write the volume of a three-dimensional region
R as a surface flux integral.

(8) Determine the sign of the divergence of the vector field in the figure below at
the indicated points P, and Ps.
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