Homework 2, due Wednesday, January 27th in class.
(1) Determine the type of quadric surface defined by $x^{2}+\left(\frac{y}{9}\right)^{2}+z^{2}=1$ and describe its intersection with the plane $y=0$.
(2) Describe the intersection of a plane $z=s$ with the surface given by $x^{2}+4 y^{2}-4 z^{2}=$ -1 . For which values of s is the intersection empty?
(3) Rewrite the quadric surface $z=x^{2}-y^{2}$ in spherical coordinates in the form $\rho=$ $f(\theta, \phi)$.
(4) Match the following 3D parametric curves to the six images shown on the following page.
(a) $x=\cos (10 t), \quad y=t, \quad z=\sin (10 t)$.
(b) $x=t, \quad y=t^{2}, \quad z=e^{-t}$.
(c) $x=t, \quad y=1 /\left(1+t^{2}\right), \quad z=t^{2}$.
(d) $x=e^{-t} \cos (10 t), \quad y=e^{-t} \sin (10 t), \quad z=e^{-t}$.
(e) $x=\cos (t), \quad y=\sin (t), \quad z=\sin (5 t)$.
(f) $x=\cos (t), \quad y=\sin (t), \quad z=\ln (t)$.
(5) Find $\vec{r}^{\prime}(t)$ and sketch the plane curve $\vec{r}(t)=(1+t, \sqrt{t})$. Include the vectors $\vec{r}(1)$ and $\vec{r}^{\prime}(1)$ in your sketch.
(6) Find the unit tangent vector $\vec{T}(t)$ of the curve $\vec{r}=4 \sqrt{t} \vec{i}+t^{2} \vec{j}+t \vec{k}$ at $t=1$.
(7) Find parametric equations for the tangent line to $x=t^{2}-1, y=t^{2}+1, z=t+1$ at the point $(-1,1,1)$.
(8) If $u(t)=\vec{r}(t) \cdot\left[\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right]$, show that $u^{\prime}(t)=\vec{r}(t) \cdot\left[\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime \prime}(t)\right]$.
(9) Find the length of the curve $\vec{r}(t)=(3 \cos 2 t, 3 \sin 2 t, 3 t)$ with t in $[0, \pi / 2]$.
(10) Find the length of the curve $\vec{r}(t)=\left(2 \cos 3 t, 2 \sin 3 t, 2 t^{3 / 2}\right)$ with t in $[0,1]$.
(11) Parameterize the curve $\vec{r}(t)=\left(2 \cos 3 t, 2 \sin 3 t, 2 t^{3 / 2}\right)$ by arc length.
(12) Find the unit tangent \vec{T}, unit normal \vec{N}, and curvature κ of the curve $\vec{r}(t)=$ $\left(t^{2}, 2 t, \ln (t)\right)$ when $t=4$.
(13) For what value of x is the curvature of the curve $y=e^{x}$ maximized? What is the limit of the curvature as $x \rightarrow \infty$?
(14) Two graphs are shown below; one is a curve $y=f(x)$ and the other is the curvature $\kappa(x)$ of that curve. Identify which is which.

I

III

V

II

IV

