HOMEWORK 2, DUE WEDNESDAY, JANUARY 27TH IN CLASS.

- (1) Determine the type of quadric surface defined by $x^2 + (\frac{y}{9})^2 + z^2 = 1$ and describe its intersection with the plane y = 0.
- (2) Describe the intersection of a plane z = s with the surface given by $x^2 + 4y^2 4z^2 = -1$. For which values of s is the intersection empty?
- (3) Rewrite the quadric surface $z = x^2 y^2$ in spherical coordinates in the form $\rho = f(\theta, \phi)$.
- (4) Match the following 3D parametric curves to the six images shown on the following page.
 - (a) $x = \cos(10t)$, y = t, $z = \sin(10t)$. (b) x = t, $y = t^2$, $z = e^{-t}$. (c) x = t, $y = 1/(1 + t^2)$, $z = t^2$. (d) $x = e^{-t}\cos(10t)$, $y = e^{-t}\sin(10t)$, $z = e^{-t}$. (e) $x = \cos(t)$, $y = \sin(t)$, $z = \sin(5t)$. (f) $x = \cos(t)$, $y = \sin(t)$, $z = \ln(t)$.
- (5) Find $\vec{r}'(t)$ and sketch the plane curve $\vec{r}(t) = (1 + t, \sqrt{t})$. Include the vectors $\vec{r}(1)$ and $\vec{r}'(1)$ in your sketch.
- (6) Find the unit tangent vector $\vec{T}(t)$ of the curve $\vec{r} = 4\sqrt{t}\vec{i} + t^2\vec{j} + t\vec{k}$ at t = 1.
- (7) Find parametric equations for the tangent line to $x = t^2 1$, $y = t^2 + 1$, z = t + 1 at the point (-1, 1, 1).
- (8) If $u(t) = \vec{r}(t) \cdot [\vec{r}'(t) \times \vec{r}''(t)]$, show that $u'(t) = \vec{r}(t) \cdot [\vec{r}'(t) \times \vec{r}'''(t)]$.
- (9) Find the length of the curve $\vec{r}(t) = (3\cos 2t, 3\sin 2t, 3t)$ with t in $[0, \pi/2]$.
- (10) Find the length of the curve $\vec{r}(t) = (2\cos 3t, 2\sin 3t, 2t^{3/2})$ with t in [0, 1].
- (11) Parameterize the curve $\vec{r}(t) = (2\cos 3t, 2\sin 3t, 2t^{3/2})$ by arc length.
- (12) Find the unit tangent \vec{T} , unit normal \vec{N} , and curvature κ of the curve $\vec{r}(t) = (t^2, 2t, \ln(t))$ when t = 4.
- (13) For what value of x is the curvature of the curve $y = e^x$ maximized? What is the limit of the curvature as $x \to \infty$?
- (14) Two graphs are shown below; one is a curve y = f(x) and the other is the curvature $\kappa(x)$ of that curve. Identify which is which.

I

V

||

