Homework 4, due February 10th

(1) Find the equation of the plane that is tangent to the surface $z=y \ln (x)$ at the point $(1,4,0)$.
(2) Use the linearization of the function $f(x, y)=\sqrt{20-x^{2}-7 y^{2}}$ at $(2,1)$ to approximate $f(1.95,1.05)$.
(3) Use the chain rule to compute $\frac{d z}{d t}$ if $z=x^{2} y+x y^{2}, x=2+t^{4}, y=1-t^{3}$.
(4) Use the chain rule to compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for $z=x^{2}+x y+y^{2}, x=s+t$, $y=s t$.
(5) Use the chain rule to compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for $z=x / y, x=s e^{t}, y=1+s e^{-t}$.
(6) Suppose that $f(x, y)$ is a differentiable function, and $g(r, s)=f\left(2 r-s, s^{2}-4 r\right)$. Compute $\left.\frac{\partial g}{\partial r}\right|_{(r=1, s=2)}$ and $\left.\frac{\partial g}{\partial s}\right|_{(r=1, s=2)}$ from the table of values below:

	f	g	$\partial f / \partial x$	$\partial f / \partial y$
$(0,0)$	3	6	4	8
$(1,2)$	6	3	2	5

(7) Compute the gradient of the function $f(x, y)=x^{2} e^{y}$.
(8) Compute the value of the gradient of the function $f(x, y, z)=\sin (x y z)$ at the point ($1,1, \pi / 4$).
(9) Compute the directional derivative of $f(x, y)=x^{2}+y^{2}+1$ at the point $(1,1)$ in the direction $\vec{u}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
(10) Compute the directional derivative of $f(x, y)=x^{2} y^{3}-y^{4}$ at the point $(2,1)$ in the direction of the ray $\theta=\pi / 4$.
(11) Compute the directional derivative of $f(x, y, z)=x^{2} e^{y z}$ at the point $(1,1,1)$ in the direction of $\vec{u}=(1,1,1)$.
(12) Find all of the directions in which the directional derivative of $f(x, y)=$ $\sin (x y)+x^{2}$ at the point $(1,0)$ has the value 1 .
(13) Find the local maxima and minima of $f(x, y)=x^{3} y+12 x^{2}-8 y$.

