Assignment 6, due Wednesday, March 2nd

(1) Estimate the volume of the solid bounded by $z=0, z=x+2 y^{2}$, and within the rectange $x \in[0,2], y \in[0,4]$ by using a Riemann sum with $n=m=2$ and use the value of the function in the lower-right corner of each sub-rectangle. Repeat the estimate using the midpoint of each rectangle - which of these do you expect to be more accurate?
(2) Estimate the volume of Angel Island, CA, in cubic feet by using the midpoint rule with a 3 by 3 subdivision as shown on the following map. The squares in the subdivision are 2000 feet square, and elevations are also shown in feet.

(3) Find the value of the integral $\iint_{R} 2 d A$, where $R=\{(x, y) \mid-3 \leq x \leq 3,-2 \leq$ $y \leq 2\}$ by identifying it as the volume of a solid.
(4) Find the value of the integral $\iint_{R} 8-x d A$, where $R=\{(x, y) \mid 4 \leq x \leq$ $8,-1 \leq y \leq 1\}$ by identifying it as the volume of a solid.
(5) Calculate the following double integrals
(6) $\int_{0}^{2} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d y d x$
(7) $\int_{2}^{4} \int_{0}^{1}(2 x+\sqrt{y}) d y d x$
(8) $\int_{1}^{2} \int_{0}^{1} \frac{y e^{y}}{x} d y d x$
(9) $\iint_{R} 2 x y e^{x^{2} y} d A, R=[0,2] \times[0,1]$.
(10) Find the volume of the solid bounded by the planes $x=4, y=2$, the coordinate planes, and the elliptic paraboloid $z=2+(x-1)^{2}+8 y^{2}$.
(11) Compute the average value of the function $f(x, y)=e^{x} \sqrt{y+e^{x}}$ on the rectangle $R=[0,1] \times[0,2]$.
(12) Compute the average value of the function $f(x, y)=x y$ on the triangle with vertices $(0,0),(3,0)$, and $(1,2)$.

