Homework 7, Due Wednesday, March 16th
(1) Compute the integral $\iint_{R}(x+y) d A$ where R is the region bounded by $y=\sqrt{x}$ and $y=x^{2}$.

Reverse the order of integration of the following two double integrals after sketching the region of integration. Note that you are not required to evaluate the resulting integral.
(2) $\int_{0}^{4} \int_{-\sqrt{16-y^{2}}}^{\sqrt{16-y^{2}}} f(x, y) d x d y$
(3) $\int_{0}^{1} \int_{2 x}^{2} f(x, y) d y d x$
(4) Sketch the region of integration of the polar integral $\int_{0}^{\pi / 2} \int_{0}^{4 \cos (\theta)} r d r d \theta$, and then compute its value.
(5) Compute the volume of the solid bounded by the paraboloid $z=10-3 x^{2}-3 y^{2}$ and the plane $z=4$ by using polar coordinates.
(6) Compute the following sum of integrals by sketching the total region of integration and then switching to polar coordinates:

$$
\int_{1 / \sqrt{2}}^{1} \int_{\sqrt{1-x^{2}}}^{x} x y d y d x+\int_{1}^{\sqrt{2}} \int_{0}^{x} x y d y d x+\int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^{2}}} x y d y d x
$$

(7) Find the center of mass of a lamina with density $\rho=c x y$, if the lamina is the rectangle $[0, a] \times[0, b]$, where a, b, and c are all positive constants.
(8) Consider a lamina which is a quarter of the unit disk, that is $x^{2}+y^{2} \leq 1$ with $x \geq 0$, $y \geq 0$, and whose density is proportional to the distance from the y-axis. Find the center of mass.
(9) Find the moments of inertia (I_{x}, I_{y}, and I_{0}) of a lamina with density $\rho(x, y)=y$ on the region bounded by $y=e^{x}, y=0, x=0$, and $x=1$.
(10) Compute the value of the triple integral $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x+y} 12 x y d z d x d y$.
(11) Compute the value of the triple integral $\int_{0}^{2} \int_{y}^{2 y} \int_{0}^{x} 2 x y z d z d x d y$.
(12) Compute the integral $\iiint_{\Omega} x d V$ where Ω is the region $x \leq 4, x \geq 4 y^{2}+4 z^{2}$.
(13) Find the center of mass of the solid bounded by the planes $x=0, z=0, x+z=1$, and the parabolic cylinder $z=1-y^{2}$ with density $\rho(x, y, z)=4$. A picture of the boundaries of this solid is shown below.

