Homework 9, Due Wednesday April 13th.
(1) Compute the vector line integral $\int_{C} \vec{F} \cdot d \vec{s}$ where $\vec{F}=(y z, x z, x y)$ and C is the curve $\vec{r}(t)=\left(t, t^{2}, t^{3}\right)$ for t in $[0,1]$.
(2) Find a function f such that $\nabla f=\vec{F}$ where $\vec{F}=\left(4 x y+\ln (x), 2 x^{2}\right)$. Use this evaluate $\int_{C} \vec{F} \cdot d \vec{s}$ where C is a curve beginning at $(1,0)$ and ending at $(2,2)$ along which $x>0$.
(3) Use Green's Theorem to evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(\sqrt{x}+y^{3}, x^{2}+\sqrt{y}\right)$ and C is the graph of $y=\sin (x)$ from $(0,0)$ to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to $(0,0)$.
(4) Evaluate the line integral $\oint_{C} \vec{F} \cdot d \vec{r}$ directly and with Green's Theorem if $\vec{F}=\left(x y^{2}, x^{3}\right)$, and C is the rectangle (oriented positively) $(0,0),(2,0),(2,3)$, and (0,3).
(5) Calculate the curl and divergence of the vector field $\vec{F}=(2, x+y z, x y-\sqrt{z})$.
(6) Calculate the curl and divergence of the vector field $\vec{F}=(\cos (y z), 0,-\sin (x y))$.
(7) Construct a potential function for the vector field $\left(e^{z}, 6, x e^{z}\right)$.
(8) Is there a vector field \vec{G} such that $\nabla \times \vec{G}=\left(x y^{2}, y z^{2}, z x^{2}\right)$? Explain why or why not.
(9) Prove that $\nabla \cdot(f \vec{F})=f \nabla \cdot \vec{F}+\vec{F} \cdot \nabla f$ if f is a scalar function of (x, y, z) with continuous partial derivatives and \vec{F} is a vector field whose components also have continuous partial derivatives.
(10) If $\vec{r}=(x, y, z), r=|\vec{r}|$, and $\vec{F}=\vec{r} / r^{p}$ (p is a real number), compute $\nabla \cdot \vec{F}$. Is there a value of p for which $\nabla \cdot \vec{F}=0$?
(11) Parameterize the plane which contains the point $(1,1,1)$ and which is parallel to the vectors $(1,0,-1)$ and $(1,-1,0)$.
(12) Parameterize the lower half of the ellipsoid $x^{2} / 9+y^{2} / 4+z^{2}=1$.
(13) Compute the surface area of the part of the plane $3 x+2 y+z=6$ that is inside the cylinder $x^{2}+y^{2}=16$.

