Math 3298 Practice Final Solutions

Please let me know if you find any mistakes or typos.
(1) Reverse the order of integration for the integral $\int_{0}^{1} \int_{x}^{1} \int_{0}^{y^{2}} f(x, y, z) d z d y d x$.

Solution: The answer is:

$$
\int_{0}^{1} \int_{\sqrt{z}}^{1} \int_{0}^{y} f(x, y, z) d x d y d z
$$

The projection onto the $x y$ plane is the triangle with vertices $(0,0),(1,1)$ and $(0,1)$. The surface slopes up in the z-direction parabolically to the line $y=1$.
(2) Compute the vector line integral $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the path $\left(4-3^{t},-2+2 t, \pi t\right)$, $t \in[0,1]$, and $\vec{F}=\left(2 x \cos z-x^{2}, z-2 y, y-x^{2} \sin z\right)$.

Solution: The field is conservative since $\operatorname{curl}(\vec{F})=\overrightarrow{0}$. A potential function for \vec{F} is $f=x^{2} \cos z-x^{3} / 3+y z-y^{2}$, so $\int_{C} \vec{F} \cdot d \vec{r}=f(1,0, \pi)-f(3,-2,0)=$ $-4 / 3-(9-9-4)=8 / 3$.
(3) Find the linearization of $f(x, y)$ at $(x, y)=(0,1)$ if $f=h(u(x, y), v(x, y))$ and $\left.\operatorname{grad}(h)\right|_{(1,1)}=\left.\left(\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v}\right)\right|_{(1,1)}=(2,3), u(x, y)=x+y$, and $v(x, y)=y^{2}$.

Solution: The linearization is $L(x, y)=f(0,1)+\left.\frac{\partial f}{\partial x}\right|_{(0,1)}(x-0)+\left.\frac{\partial f}{\partial y}\right|_{(0,1)}(y-1)$. To find the partial derivatives we use the chain rule and the derivatives $\left.\frac{\partial u}{\partial x} \right\rvert\,=1$, $\frac{\partial u}{\partial y}=1, \frac{\partial v}{\partial x}\left|=0, \frac{\partial v}{\partial y}\right|_{0,1}=2$:

$$
\begin{aligned}
& \left.\frac{\partial f}{\partial x}\right|_{(0,1)}=\left.\left.\frac{\partial h}{\partial u}\right|_{(1,1)} \frac{\partial u}{\partial x}\right|_{(0,1)}+\left.\left.\frac{\partial h}{\partial v}\right|_{(1,1)} \frac{\partial v}{\partial x}\right|_{(0,1)}=2 \cdot 1+3 \cdot 0=2 \\
& \left.\frac{\partial f}{\partial y}\right|_{(0,1)}=\left.\left.\frac{\partial h}{\partial u}\right|_{(1,1)} \frac{\partial u}{\partial y}\right|_{(0,1)}+\left.\left.\frac{\partial h}{\partial v}\right|_{(1,1)} \frac{\partial v}{\partial y}\right|_{(0,1)}=2 \cdot 1+3 \cdot 2=8
\end{aligned}
$$

So

$$
L(x, y)=f(0,1)+2(x-0)+8(y-1)=f(0,1)+2 x+8 y-8 .
$$

Since neither f nor h is given explicitly this is all that is possible to determine, besides the fact that $f(0,1)=h(1,1)$.
(4) Find the surface area of the torus parameterized by $x=(2+\cos (v)) \cos (u)$, $y=(2+\cos (v)) \sin (u), z=\sin (v)$, with $u \in[0,2 \pi]$ and $v \in[0,2 \pi]$.

Solution: The surface area element is computed from the length of the cross product of the partials $\frac{\partial \vec{r}}{\partial u}$ and $\frac{\partial \vec{r}}{\partial v}$, where $\vec{r}=(x, y, z)$. After many uses of the identity $\sin ^{2}(t)+\cos ^{2}(t)=1$, this simplifies to

$$
d S=\left|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right| d u d v=|2+\cos (v)| d u d v .
$$

The absolute value function can be dropped because $2+\cos (v)>0$. Now the surface area can be computed:

$$
S . A .=\int_{0}^{2 \pi} \int_{0}^{2 \pi}(2+\cos (v)) d u d v=2 \pi \int_{0}^{2 \pi}(2+\cos (v)) d v=8 \pi^{2}
$$

(5) Find the maxima and minima of $f(x, y)=\frac{1}{x}+\frac{2}{y}$ on the set $\frac{1}{x^{2}}+\frac{1}{y^{2}}=1$.

Solution: I will use the Lagrange multiplier method. Let $g=\frac{1}{x^{2}}+\frac{1}{y^{2}}-1$ (the constraint), and then require that $\nabla(f)=\lambda \nabla(g)$, i.e.

$$
\left(-\frac{1}{x^{2}},-\frac{2}{y^{2}}\right)=\left(-\frac{2 \lambda}{x^{3}},-\frac{2 \lambda}{y^{3}}\right) .
$$

After clearing denominators we find that $\lambda=x / 2=y$. Using that relation between x and y, the constraint equations becomes $g(x, x / 2)=\frac{1}{x^{2}}+\frac{4}{x^{2}}-$ $1=0$ or $x^{2}=5$. So there are two critical points on the constraint curve, $\pm(\sqrt{5}, \sqrt{5} / 2)$. Comparison with other values of f on the constraint curve shows that $f(\sqrt{5}, \sqrt{5} / 2)=\sqrt{5}$ is a maximum and $f(-\sqrt{5},-\sqrt{5} / 2)=-\sqrt{5}$ is a minimum.
(6) Find the volume of the solid wedge bounded by the planes $z=0$ and $z=-2 y$ and the cylinder $x^{2}+y^{2}=4$ (with $y \geq 0$).

Solution: In cylindrical coordinates

$$
\begin{gathered}
V=\int_{0}^{\pi} \int_{0}^{2} \int_{-2 r \sin \theta}^{0} d z r d r d \theta=\int_{0}^{\pi} \int_{0}^{2} 2 r^{2} \sin \theta d r d \theta \\
=\int_{0}^{\pi} 16 \sin \theta / 3 d \theta=32 / 3
\end{gathered}
$$

(7) Use Green's Theorem to find the smooth, simple, closed and positively oriented curve in the plane for which the line integral $\oint\left(\frac{x^{2} y}{4}+\frac{y^{3}}{3}\right) d x+x d y$ has the largest possible value.

Solution: The corresponding double integral from Green's theorem is

$$
\iint_{R}\left(1-x^{2} / 4-y^{2}\right) d A
$$

The integrand is positive in the interior of the ellipse $x^{2} / 4+y^{2}=1$, so we choose this ellipse as the desired curve $(x=2 \cos (t), y=\sin t)$.
(8) Compute the value of $\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d S$ where S is the upper half of the ellipsoid $4 x^{2}+9 y^{2}+36 z^{2}=36, z \geq 0$, with upward pointing normal, and $\vec{F}=\left(y, x^{2},\left(x^{2}+y^{2}\right)^{3 / 2} e^{x y z}\right)$.

Solution: The presence of nasty stuff like $e^{x y z}$ inspires us to reformulate the computation using Stokes' theorem. The ellipse boundary can be parameterized as $x=3 \cos t, y=2 \sin t, z=0$. The corresponding line integral is then

$$
\begin{gathered}
\oint_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi}\left(2 \sin t, 9 \cos ^{2} t,\left(9 \cos ^{2}(t)+4 \sin ^{2}(t)\right)^{3 / 2}\right) \cdot(-3 \sin t, 2 \cos t, 0) d t= \\
\int_{0}^{2 \pi}-6 \sin ^{2}(t)+18 \cos ^{3}(t) d t=-6 \pi
\end{gathered}
$$

(9) Let $\vec{r}(t)$ be a curve in space with unit tangent, normal, and binormal vectors \vec{T}, \vec{N}, and \vec{B}. Show that $\frac{d \vec{B}}{d t}$ is perpendicular to \vec{T}.

Solution: Since $\vec{B}=\vec{T} \times \vec{N}, \frac{d \vec{B}}{d t}=\frac{d \vec{T}}{d t} \times \vec{N}+\vec{T} \times \frac{d \vec{N}}{d t}$. However \vec{N} is parallel to $\frac{d \vec{T}}{d t}$, so in fact $\frac{d \vec{B}}{d t}=\vec{T} \times \frac{d \vec{N}}{d t}$. Finally, note that \vec{a} is always perpendicular to $\vec{a} \times \vec{b}$ for any vectors \vec{a}, \vec{b}.
(10) Compute the flux integral $\iint_{S} \vec{F} \cdot \vec{n} d S$ where S is the graph of $z=1-x^{2}-y^{2}$, with upward normal, for $z \geq 0$, and with $\vec{F}=\left(x z, y z, 2 z^{2}\right)$.

Solution: The given flux integral can be computed directly or by using the divergence theorem. I will do it both ways for comparison (on a test, one method would be sufficient). Directly: since the surface is given as a graph $z=f(x, y)$, $\vec{n} d S=\overrightarrow{d S}=\left(-f_{x},-f_{y}, 1\right)=(2 x, 2 y, 1)$. Then

$$
\iint_{S} \vec{F} \cdot \vec{n} d S=\left.\iint_{S}\left(x z, y z, 2 z^{2}\right)\right|_{S} \cdot(2 x, 2 y, 1) d x d y
$$

$$
\begin{gathered}
=\iint_{S}\left(1-x^{2}-y^{2}\right)\left(2 x^{2}+2 y^{2}\right)+2\left(1-x^{2}-y^{2}\right)^{2} d x d y=2 \int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right)\left(2 r^{2}+2\left(1-r^{2}\right)\right) r d r d \theta \\
=4 \int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{3}\right) d r d \theta=\pi
\end{gathered}
$$

We cannot immediately apply the divergence theorem because this surface is not closed. However, we could consider the closed surface $S_{2}=S \cup S_{1}$, where S_{1} is the unit disk $z=0, x^{2}+y^{2} \leq 1$ and with normal $(0,0,-1)$. Since $\vec{F}=0$ on S_{1}, this addition doesn't actually affect the flux integral, i.e. $\iint_{S_{2}} \vec{F} \cdot \vec{n} d S_{2}=$ $\iint_{S} \vec{F} \cdot \vec{n} d S$ but $\iint_{S_{2}} \vec{F} \cdot \vec{n} d S_{2}=\iiint \operatorname{div} \vec{F} d V$. Since $\operatorname{div} \vec{F}=6 z$, the value we are after can be computed in cylindrical coordinates as:

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} 6 z r d z d r d \theta=3 \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}}\left(1-r^{2}\right)^{2} r d r d \theta=\pi
$$

(11) Use the divergence theorem to compute the flux of $\vec{F}=\left(z^{5}+x, \cos (x z), z^{2}\right)$ through the surface bounded by $z=0$ and $z=1-x^{2}-y^{2}$.

Solution: The divergence of \vec{F} is $1+2 z$, so

$$
\iint_{S} \nabla \times \vec{F} \cdot d \vec{S}=\iiint_{R}(1+2 z) d V
$$

where R is the interior of S. To evaluate this it is easiest to use cylindrical coordinates:

$$
\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{1-r^{2}}(1+2 z) r d z d \theta d r=\int_{0}^{1} \int_{0}^{2 \pi}\left(2 r-3 r^{3}+r^{5}\right) d \theta d r=5 / 12 \int_{0}^{2 \pi} d \theta=5 \pi / 6
$$

