
Math 3298 Practice Final Solutions

Please let me know if you find any mistakes or typos.

(1) Reverse the order of integration for the integral
∫ 1

0

∫ 1

x

∫ y2
0
f(x, y, z)dzdydx.

Solution: The answer is:∫ 1

0

∫ 1

√
z

∫ y

0

f(x, y, z) dx dy dz.

The projection onto the xy plane is the triangle with vertices (0, 0), (1, 1) and
(0, 1). The surface slopes up in the z-direction parabolically to the line y = 1.

(2) Compute the vector line integral
∫
C
~F ·d~r where C is the path (4−3t,−2+2t, πt),

t ∈ [0, 1], and ~F = (2x cos z − x2, z − 2y, y − x2 sin z).

Solution: The field is conservative since curl(~F ) = ~0. A potential function

for ~F is f = x2 cos z − x3/3 + yz − y2, so
∫
C
~F · d~r = f(1, 0, π) − f(3,−2, 0) =

−4/3− (9− 9− 4) = 8/3.

(3) Find the linearization of f(x, y) at (x, y) = (0, 1) if f = h(u(x, y), v(x, y)) and
grad(h)|(1,1) = (∂h

∂u
, ∂h
∂v

)|(1,1) = (2, 3), u(x, y) = x+ y, and v(x, y) = y2.

Solution: The linearization is L(x, y) = f(0, 1)+ ∂f
∂x
|(0,1)(x−0)+ ∂f

∂y
|(0,1)(y−1).

To find the partial derivatives we use the chain rule and the derivatives ∂u
∂x
| = 1,

∂u
∂y

= 1, ∂v
∂x
| = 0, ∂v

∂y
|0,1 = 2:

∂f

∂x
|(0,1) =

∂h

∂u
|(1,1)

∂u

∂x
|(0,1) +

∂h

∂v
|(1,1)

∂v

∂x
|(0,1) = 2 · 1 + 3 · 0 = 2

∂f

∂y
|(0,1) =

∂h

∂u
|(1,1)

∂u

∂y
|(0,1) +

∂h

∂v
|(1,1)

∂v

∂y
|(0,1) = 2 · 1 + 3 · 2 = 8

So

L(x, y) = f(0, 1) + 2(x− 0) + 8(y − 1) = f(0, 1) + 2x+ 8y − 8.

Since neither f nor h is given explicitly this is all that is possible to determine,
besides the fact that f(0, 1) = h(1, 1).

(4) Find the surface area of the torus parameterized by x = (2 + cos(v)) cos(u),
y = (2 + cos(v)) sin(u), z = sin(v), with u ∈ [0, 2π] and v ∈ [0, 2π].
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Solution: The surface area element is computed from the length of the cross
product of the partials ∂~r

∂u
and ∂~r

∂v
, where ~r = (x, y, z). After many uses of the

identity sin2(t) + cos2(t) = 1, this simplifies to

dS = |∂~r
∂u
× ∂~r

∂v
|dudv = |2 + cos(v)|dudv.

The absolute value function can be dropped because 2 + cos(v) > 0. Now the
surface area can be computed:

S.A. =

∫ 2π

0

∫ 2π

0

(2 + cos(v))dudv = 2π

∫ 2π

0

(2 + cos(v))dv = 8π2.

(5) Find the maxima and minima of f(x, y) = 1
x

+ 2
y

on the set 1
x2

+ 1
y2

= 1.

Solution: I will use the Lagrange multiplier method. Let g = 1
x2

+ 1
y2
− 1 (the

constraint), and then require that 5(f) = λ5 (g), i.e.

(− 1

x2
,− 2

y2
) = (−2λ

x3
,−2λ

y3
).

After clearing denominators we find that λ = x/2 = y. Using that relation
between x and y, the constraint equations becomes g(x, x/2) = 1

x2
+ 4

x2
−

1 = 0 or x2 = 5. So there are two critical points on the constraint curve,
±(
√

5,
√

5/2). Comparison with other values of f on the constraint curve shows
that f(

√
5,
√

5/2) =
√

5 is a maximum and f(−
√

5,−
√

5/2) = −
√

5 is a mini-
mum.

(6) Find the volume of the solid wedge bounded by the planes z = 0 and z = −2y
and the cylinder x2 + y2 = 4 (with y ≥ 0).

Solution: In cylindrical coordinates

V =

∫ π

0

∫ 2

0

∫ 0

−2r sin θ
dz r dr dθ =

∫ π

0

∫ 2

0

2r2 sin θ dr dθ

=

∫ π

0

16 sin θ/3 dθ = 32/3.

(7) Use Green’s Theorem to find the smooth, simple, closed and positively oriented

curve in the plane for which the line integral
∮

(x
2y
4

+ y3

3
)dx+xdy has the largest

possible value.



3

Solution: The corresponding double integral from Green’s theorem is∫ ∫
R

(1− x2/4− y2) dA.

The integrand is positive in the interior of the ellipse x2/4+y2 = 1, so we choose
this ellipse as the desired curve (x = 2 cos (t), y = sin t).

(8) Compute the value of
∫ ∫

S
(5 × ~F ) · ~n dS where S is the upper half of the

ellipsoid 4x2 + 9y2 + 36z2 = 36, z ≥ 0, with upward pointing normal, and
~F = (y, x2, (x2 + y2)3/2exyz).

Solution: The presence of nasty stuff like exyz inspires us to reformulate the
computation using Stokes’ theorem. The ellipse boundary can be parameterized
as x = 3 cos t, y = 2 sin t, z = 0. The corresponding line integral is then∮

C

~F · d~r =

∫ 2π

0

(2 sin t, 9 cos2 t, (9 cos2(t) + 4 sin2(t))3/2) · (−3 sin t, 2 cos t, 0)dt =

∫ 2π

0

−6 sin2(t) + 18 cos3(t) dt = −6π.

(9) Let ~r(t) be a curve in space with unit tangent, normal, and binormal vectors ~T ,
~N , and ~B. Show that d ~B

dt
is perpendicular to ~T .

Solution: Since ~B = ~T × ~N , d ~B
dt

= d~T
dt
× ~N + ~T × d ~N

dt
. However ~N is parallel

to d~T
dt

, so in fact d ~B
dt

= ~T × d ~N
dt

. Finally, note that ~a is always perpendicular to

~a×~b for any vectors ~a, ~b.

(10) Compute the flux integral
∫ ∫

S
~F ·~n dS where S is the graph of z = 1−x2− y2,

with upward normal, for z ≥ 0, and with ~F = (xz, yz, 2z2).

Solution: The given flux integral can be computed directly or by using the
divergence theorem. I will do it both ways for comparison (on a test, one method
would be sufficient). Directly: since the surface is given as a graph z = f(x, y),

~n dS = ~dS = (−fx,−fy, 1) = (2x, 2y, 1). Then∫ ∫
S

~F · ~n dS =

∫ ∫
S

(xz, yz, 2z2)|S · (2x, 2y, 1) dxdy
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=

∫ ∫
S

(1−x2−y2)(2x2+2y2)+2(1−x2−y2)2 dxdy = 2

∫ 2π

0

∫ 1

0

(1−r2)(2r2+2(1−r2))r drdθ

= 4

∫ 2π

0

∫ 1

0

(r − r3) drdθ = π.

We cannot immediately apply the divergence theorem because this surface is
not closed. However, we could consider the closed surface S2 = S∪S1, where S1

is the unit disk z = 0, x2 + y2 ≤ 1 and with normal (0, 0,−1). Since ~F = 0 on

S1, this addition doesn’t actually affect the flux integral, i.e.
∫ ∫

S2

~F · ~n dS2 =∫ ∫
S
~F · ~n dS but

∫ ∫
S2

~F · ~n dS2 =
∫ ∫ ∫

div ~FdV . Since div ~F = 6z, the value
we are after can be computed in cylindrical coordinates as:∫ 2π

0

∫ 1

0

∫ 1−r2

0

6zr dzdrdθ = 3

∫ 2π

0

∫ 1

0

∫ 1−r2

0

(1− r2)2r drdθ = π.

(11) Use the divergence theorem to compute the flux of ~F = (z5 + x, cos(xz), z2)
through the surface bounded by z = 0 and z = 1− x2 − y2.

Solution: The divergence of ~F is 1 + 2z, so∫ ∫
S

∇× ~F · d~S =

∫ ∫ ∫
R

(1 + 2z)dV

where R is the interior of S. To evaluate this it is easiest to use cylindrical
coordinates:

∫ 1

0

∫ 2π

0

∫ 1−r2

0

(1+2z)r dz dθ dr =

∫ 1

0

∫ 2π

0

(2r−3r3 +r5) dθ dr = 5/12

∫ 2π

0

dθ = 5π/6


