Math 3298 Practice Midterm 1

This practice test is over twice as long as the actual exam. The material covered is in chapters 13,14 , and up to chapter 15.5 in the Stewart text. The emphasis will be on multivariable differential calculus (chapter 14).
(1) (a) Use the formula $\kappa=\frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}\right|^{3}}$ to show that for a parameterized plane curve $(x(t), y(t))$ the curvature is

$$
\kappa=\frac{|\dot{x} \ddot{y}-\ddot{x} \dot{y}|}{\left|\dot{x}^{2}+\dot{y}^{2}\right|^{3 / 2}}
$$

where a dot denotes a derviative with respect to time.
(b) Use the result of part (a) to compute the curvature of $x(t)=1+t^{3}, y(t)=$ $t+t^{2}$.
(2) Classify the critical points of $f(x, y)=2 y^{2}+2 x y-y-x^{3}+x+1$.
(3) Compute the limit $\frac{x^{2}+y \sin (y)}{x^{2}+y^{2}}$ if it exists, or show why it does not exist.
(4) Find the curvature of $\vec{r}(t)=\left(t^{2}, t^{3}, 2 t^{3}\right)$ at $t=1$.
(5) Use the linearization of the function $f(x, y)=x+\ln (x y)$ at $(x, y)=(2,1 / 2)$ to find an approximate value for $f(1.9, .4)$.
(6) Find three positive numbers x, y, and z such that $x+2 y+3 z=7$ and for which the function $f(x, y, z)=x^{2} y^{2} z^{3}$ is maximized.
(7) Use the chain rule to compute $\frac{\partial z}{\partial t}$ at $t=2$ if $z=\sin (x y) \sin (y)$ and $x=1 / t$, $y=f(t)$ where $f^{\prime}(2)=3$ and $f(2)=\pi$.
(8) Find the directions in which the directional derivative of $f(x, y)=x^{2}+2 y^{2}-4 y$ at the point $(1,1)$ has the value 1 .
(9) Find the integral of the function $f(x, y)=2 x \sqrt{y^{2}-x^{2}}$ over the triangle $T=$ $\{(x, y) \mid 0 \leq y \leq 2,0 \leq x \leq y\}$

