Please notify me as soon as possible if you believe there is an error in these solutions.
(1) (a) Use the formula $\kappa=\frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}\right|^{3}}$ to show that for a parameterized plane curve $(x(t), y(t))$ the curvature is

$$
\kappa=\frac{|\dot{x} \ddot{y}-\ddot{x} \dot{y}|}{\left|\dot{x}^{2}+\dot{y}^{2}\right|^{3 / 2}}
$$

Solution: In order to use the three-dimensional curvature formula we can embed the planar curve $(x(t), y(t))$ into space as $\vec{r}(t)=(x(t), y(t), 0)$. Then only the third component of the cross-product $\vec{r}^{\prime} \times \vec{r}^{\prime \prime}$ is nonzero (since the first and second derivative are in the x - y plane and the cross-product must be perpendicular to them), with magnitude $|\dot{x} \ddot{y}-\ddot{x} \dot{y}|$.
(b) Use the result of part (a) to compute the curvature of $x(t)=1+t^{3}, y(t)=$ $t+t^{2}$.
Solution: We compute all the pieces: $x^{\prime}=3 t^{2}, x^{\prime \prime}=6 t, y^{\prime}=1+2 t, y^{\prime \prime}=2$. Then the curvature is

$$
\kappa=\frac{|6(t+1) t|}{\left(9 t^{4}+4 t^{2}+4 t+1\right)^{\frac{3}{2}}}
$$

(2) Classify the critical points of $f(x, y)=2 y^{2}+2 x y-y-x^{3}+x+1$.

Solution: To find the critical points we need to solve the system

$$
\begin{gathered}
\frac{\partial f}{\partial x}=-3 x^{2}+2 y+1=0 \\
\frac{\partial f}{\partial y}=4 y+2 x-1=0
\end{gathered}
$$

There are many ways to proceed. One way is to eliminate y by subtracting two times the first equation from the second:

$$
\frac{\partial f}{\partial y}-2 \frac{\partial f}{\partial x}=6 x^{2}+2 x-3=0
$$

This has roots $x=-1 / 6 \pm \sqrt{19} / 6$, and corresponding y-values $y=1 / 3 \mp \sqrt{19} / 12$. To classify these two critical points we compute the discriminant

$$
D=\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial y \partial x}\right)^{2}=(-6 x)(4)-(2)^{2}=-24 x-4
$$

At $(-1 / 6+\sqrt{19} / 6,1 / 3-\sqrt{19} / 12)$ we have $D<0$ so it is a saddle point. At $(-1 / 6-\sqrt{19} / 6,1 / 3+\sqrt{19} / 12), D>0$ and $\frac{\partial^{2} f}{\partial x^{2}}>0$ so that point is a relative minimum.
(3) Compute the limit $\frac{x^{2}+y \sin (y)}{x^{2}+y^{2}}$ if it exists, or show why it does not exist.

Solution: One way to think about this is to expand $\sin (y)$ in a power series around $y=0$, since the series for $\sin (y)$ converges everywhere and it will behave like its lowest order term for small $|y|$:

$$
\sin (y)=y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\ldots
$$

so we would expect the function to behave like

$$
\frac{x^{2}+y^{2}}{x^{2}+y^{2}}-\frac{y^{4} / 6}{x^{2}+y^{2}}+\ldots=1-\frac{y^{4} / 6}{x^{2}+y^{2}}+\ldots
$$

and for the limit to exists and be equal to 1 . A proof is not expected on this type of problem, but it is not too hard to prove if we assume the fact that $|\sin (y)-y|$ is $O\left(y^{3}\right)$ as $y \rightarrow 0$ - i.e. as y gets close to $0, \sin (y)=y+\epsilon(y)$, where $\epsilon(y)$ is a function such that there exists positive constant M, y_{0} where $|\epsilon(y)|<M y^{3}$ for all $|y|<\left|y_{0}\right|$.

Another approach would be to check the behavior along straight lines through the origin, such as $y=m x$. The limit of the function on such a line as $x \rightarrow 0$ can be computed by using L'Hopital's Rule, and it is 1 for all m. This is not a proof, but it is usually strong evidence that the limit exists.
(4) Find the curvature of $\vec{r}(t)=\left(t^{2}, t^{3}, 2 t^{3}\right)$ at $t=1$.

Solution: The first two derivatives are \vec{r} are $\vec{r}^{\prime}=\left(2 t, 3 t^{2}, 6 t^{2}\right)$ and $\vec{r}^{\prime \prime}=$ $(2,6 t, 12 t)$. At $t=1$ these reduce to $(2,3,6)$ and $(2,6,12)$ respectively. Now we can compute the curvature:

$$
\kappa=\frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{3}\right|^{3}}=\frac{6 \sqrt{5}}{343}
$$

(The cross product at $t=1$ is $\vec{r}^{\prime} \times \vec{r}^{\prime \prime}=(0,-12,6)$.)
(5) Use the linearization of the function $f(x, y)=x+\ln x y$ at $(x, y)=(2,1 / 2)$ to find an approximate value for $f(1.9, .4)$.

Solution: The linearization is

$$
\begin{aligned}
& L(x, y)=\left.f\right|_{(2,1 / 2)}+\left.\frac{\partial f}{\partial x}\right|_{(2,1 / 2)}(x-2)+\left.\frac{\partial f}{\partial y}\right|_{(2,1 / 2)}(y-1 / 2) . \\
= & 2+\ln 1+\left(1+\frac{1}{2}\right)(x-2)+(2)(y-1 / 2)=-2+3 x / 2+2 y
\end{aligned}
$$

since $\frac{\partial f}{\partial x}=1+1 / x$ and $\frac{\partial f}{\partial y}=1 / y$.
So our approximation is $L(1.9,4)=1.65 \approx f(1.9, .4)=1.62556 \ldots$
(6) Find three positive numbers x, y, and z such that $x+2 y+3 z=7$ and for which the function $f(x, y, z)=x^{2} y^{2} z^{3}$ is maximized.

Solution: This can be done by elimination or Lagrange multipliers. The latter is slightly simpler. The solution will lie on the constraint $g=x+2 y+3 z-7=0$. Critical points of f restricted to the set $g=0$ will have $\lambda \operatorname{grad}(g)=\operatorname{grad}(f)$ or

$$
\lambda(1,2,3)=(\lambda, 2 \lambda, 3 \lambda)=\left(2 x y^{2} z^{3}, 2 x^{2} y z^{3}, 3 x^{2} y^{2} z^{2}\right)
$$

Dividing the first equation by the second and third gives $1 / 2=y / x$ and $1 / 3=$ $2 z /(3 x)$, so $y=x / 2$ and $z=x / 2$. Plugging these into $g=0$ gives $x+2(x / 2)+$ $3(x / 2)-7=7 x / 2-7=0$ so $x=2, y=1$, and $z=1$.
(7) Use the chain rule to compute $\frac{\partial z}{\partial t}$ at $t=2$ if $z=\sin (x y) \sin (y)$ and $x=1 / t$, $y=f(t)$ where $f^{\prime}(2)=3$ and $f(2)=\pi$.

Solution:

$$
\begin{gathered}
\left.\frac{\partial z}{\partial t}\right|_{t=2}=\left.\left(\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}\right)\right|_{t=2} \\
=(y \cos (x y) \sin (y))\left(\frac{-1}{t^{2}}\right)+\left.(x \cos (x y) \sin (y)+\sin (x y) \cos (y)) f^{\prime}(t)\right|_{t=2} \\
=(\pi \cos (x \pi) \sin (\pi))\left(\frac{-1}{t^{2}}\right)+(x \cos (x \pi) \sin (\pi)+\sin (x \pi) \cos (\pi)) f^{\prime}(t) \\
=(\pi \cos (\pi / 2) \sin (\pi))\left(\frac{-1}{4}\right)+\left(\frac{1}{2} \cos (\pi / 2) \sin (\pi)+\sin (\pi / 2) \cos (\pi)\right) 3 \\
=-3
\end{gathered}
$$

(8) Find the directions in which the directional derivative of $f(x, y)=x^{2}+2 y^{2}-4 y$ at the point $(1,1)$ has the value 1 .

Solution: The directional derivative of f at $(1,1)$ in the direction $\vec{u}=\left(u_{1}, u_{2}\right)$ is

$$
\left.\nabla f\right|_{(1,1)} \cdot \vec{u}=\left.\frac{\partial f}{\partial x}\right|_{(1,1)} u_{1}+\left.\frac{\partial f}{\partial y}\right|_{(1,1)} u_{2}
$$

So we compute the partial derivatives of f and evaluate them at $(1,1):\left.\frac{\partial f}{\partial x}\right|_{(1,1)}=$ $\left.2 x\right|_{(1,1)}=2,\left.\frac{\partial f}{\partial y}\right|_{(1,1)}=\left.(4 y-4)\right|_{(1,1)}=0$. Then the condition on the directional derivative becomes

$$
\left.\nabla f\right|_{(1,1)} \cdot \vec{u}=(2,0) \cdot\left(u_{1}, u_{2}\right)=2 u_{1}=1
$$

so $u_{1}=1 / 2$. Since \vec{u} is a unit vector $u_{1}^{2}+u_{2}^{2}=1$, and so $u_{2}^{2}=3 / 4$ and the two possible directions are $\vec{u}=(1 / 2,-\sqrt{3} / 2)$ and $\vec{u}=(1 / 2, \sqrt{3} / 2)$.
(9) Find the integral of the function $f(x, y)=2 x \sqrt{y^{2}-x^{2}}$ over the triangle $T=$ $\{(x, y) \mid 0 \leq y \leq 2,0 \leq x \leq y\}$

Solution: This can be done in either order but its easier to do the x-integral first:

$$
\begin{gathered}
\int_{0}^{2} \int_{0}^{y} 2 x \sqrt{y^{2}-x^{2}} d x d y=-\left.\frac{2}{3} \int_{0}^{2}\left(y^{2}-x^{2}\right)^{3 / 2}\right|_{0} ^{y} d y \\
=\frac{2}{3} \int_{0}^{2} y^{3} d y=\left.\frac{y^{4}}{6}\right|_{0} ^{2}=8 / 3
\end{gathered}
$$

The first integral can be done with a substitution $u=y^{2}-x^{2}$.

