Math 3298 Practice Midterm 2 Solutions

Please let me know if you think there are errors in any of the solutions.
(1) Find the average value of the function $1+3 x+y$ on the triangle with vertices $(0,0),(1,0)$, and $(0,2)$.

Solution: The area of the triangle is equal to one, so the average value will simply be the integral

$$
\int_{0}^{1} \int_{0}^{2-2 x}(1+3 x+y) d y d x=\int_{0}^{1}\left(4-4 x^{2}\right) d x=\frac{8}{3}
$$

(2) Find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=1$.

Solution: This is probably easiest in cylindrical coordinates. Solving the sphere boundary equation for z we find $z= \pm \sqrt{9-x^{2}-y^{2}}= \pm \sqrt{9-r^{2}}$. So the volume is

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{1}^{3} \int_{-\sqrt{9-r^{2}}}^{\sqrt{9-r^{2}}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{1}^{3} 2 r \sqrt{9-r^{2}} d r d \theta \\
\quad=\int_{0}^{2 \pi}-\left.\frac{2}{3}\left(9-r^{2}\right)^{3 / 2}\right|_{1} ^{3} d \theta=\frac{4 \pi 8^{3 / 2}}{3}
\end{gathered}
$$

(3) Compute the integral $\iiint_{R} \sqrt{x^{2}+y^{2}} d V$ where R is the region inside the cylinder $x^{2}+y^{2}=25$ and between $z=-1$ and $z=4$.

Solution: Again, cylindrical coordinates are the best choice for this problem.

$$
\begin{gathered}
\iiint_{R} \sqrt{x^{2}+y^{2}} d V=\int_{0}^{5} \int_{0}^{2 \pi} \int_{-1}^{4} r^{2} d z d \theta d r=\int_{0}^{5} \int_{0}^{2 \pi} 5 r^{2} d \theta d r \\
=\int_{0}^{5} 10 \pi r^{2} d r=\left.\frac{10 \pi r^{3}}{3}\right|_{0} ^{5}=\frac{1250 \pi}{3}
\end{gathered}
$$

(4) Find the volume of the solid bounded by the planes $z=x, y=x, x+y=2$, and $z=0$.

Solution: This is a tetrahedron. By considering any three of the four boundary equations, we can find that the vertices are $(0,0,0),(1,1,0),(1,1,1)$, and
$(0,2,0)$. This helps to sketch the figure and determine the bounds for the integral:

$$
\begin{gathered}
V=\int_{0}^{1} \int_{x}^{2-x} \int_{0}^{x} d z d y d x=\int_{0}^{1} \int_{x}^{2-x} x d y d x=\left.\int_{0}^{1} x y\right|_{x} ^{2-x} d x \\
=\int_{0}^{1}\left(2 x-2 x^{2}\right) d x=1 / 3
\end{gathered}
$$

(5) Change the order of integration of $\int_{0}^{2} \int_{\operatorname{Arctan}(x)}^{\operatorname{Arctan}(\pi x)} d y d x$ and evaluate the integral.

Solution: This question is definitely a bit harder than one I would put on an exam. The integration region is shown below.

To do the x-integral first we need to split up the region into two pieces because of the corner at $(2, \arctan (2))$. Then we have

$$
\begin{gathered}
\int_{0}^{\arctan (2)} \int_{\tan (y) / \pi}^{\tan (y)} d x d y+\int_{\arctan (2)}^{\arctan (2 \pi)} \int_{\tan (y) / \pi}^{2} d x d y= \\
\int_{0}^{\arctan (2)}(\tan (y)-\tan (y) / \pi) d y+\int_{\arctan (2)}^{\arctan (2 \pi)}(2-\tan (y) / \pi) d y= \\
-2 \arctan (2)+2 \arctan (2 \pi)+\frac{(-1+\pi) \log (5)}{2 \pi}+\frac{\log \left(\frac{5}{1+4 \pi^{2}}\right)}{2 \pi} \approx .827 \ldots
\end{gathered}
$$

The final answer has been simplified using several properties of the logarithm: $\log (a)-\log (b)=\log (a / b), \log (1 / b)=-\log (b)$, and $\log \left(a^{b}\right)=b \log (a)$.
(6) Compute the integral $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)^{3 / 2} d z d y d x$ by changing to cylindrical coordinates.

Solution: The projection of the region onto the $x-y$ plane is the disk of radius 1. So the integral can be rewritten in cylindrical coordinates as:

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{2-r^{2}} r^{4} d z d r d \theta
$$

which evaluates to

$$
=\frac{1}{5} \int_{0}^{2 \pi} \int_{0}^{1}\left(2-2 r^{2}\right) r^{4} d r d \theta=8 \pi / 35
$$

(7) This difficult a problem would be extra credit: Assuming that $\beta \in(0, \pi / 2)$ and $a>0$, compute the following integral

$$
\int_{0}^{a \sin \beta} \int_{y \cot \beta}^{\sqrt{a^{2}-y^{2}}} \int_{0}^{1} \ln \left(x^{2}+y^{2}\right) d z d x d y
$$

Solution: The z-integral is easy and we get

$$
\int_{0}^{a \sin \beta} \int_{y \cot \beta}^{\sqrt{a^{2}-y^{2}}} \ln \left(x^{2}+y^{2}\right) d x d y
$$

The first thing to do is understand the region of integration. The upper x boundary $x=\sqrt{a^{2}-y^{2}}$ is the right-hand semicircle of radius a centered at $(0,0)$. The lower x-boundary is the line $x=\cot (\beta) y$ or $y=\tan (\beta) x$, a line through $(0,0)$ with angle β. The y boundaries are the x-axis and the height where the line intersects the circle. So our region of integration is simply a circular wedge of radius a and angle β from the x-axis. Then our integral is much easier in polar coordinates:

$$
\int_{0}^{a} \int_{0}^{\beta} \ln \left(r^{2}\right) r d \theta d r=\beta \int_{0}^{a} \ln \left(r^{2}\right) r d r
$$

With a substitution $u=r^{2}$, this integral can be done with integration by parts, or looked up in a table, with the final answer being $\beta a^{2}\left(\ln (a)-\frac{1}{2}\right)$.

