Math 3298 Practice Midterm 2 Solutions

Please let me know if you think there are errors in any of the solutions.

(1) Find the average value of the function 1 + 3z + y on the triangle with vertices
(0,0), (1,0), and (0,2).

Solution: The area of the triangle is equal to one, so the average value will
simply be the integral
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(2) Find the volume of the solid inside the sphere x? + y? + 2% = 9 and outside the
cylinder 22 + 3? = 1.

Solution: This is probably easiest in cylindrical coordinates. Solving the
sphere boundary equation for z we find z = £4/9 — 22 — 2 = £v/9 —r2. So
the volume is

27 3 V9—r2 27 3
/ / / rdzdrdf :/ / 2rv'9 — r2drdf
0 1 J-V9—2 0 1
27

2 47 83/2
_ —Z2(9 — r2)3/21349 =
/0 S0 ;

(3) Compute the integral / / / V2?2 +y? dV where R is the region inside the
R
cylinder 22 + 3% = 25 and between z = —1 and z = 4.

Solution: Again, cylindrical coordinates are the best choice for this problem.
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(4) Find the volume of the solid bounded by the planes z =z, y =z,  + y = 2,
and z = 0.

Solution: This is a tetrahedron. By considering any three of the four bound-
ary equations, we can find that the vertices are (0,0,0), (1,1,0), (1,1,1), and



(0,2,0). This helps to sketch the figure and determine the bounds for the inte-

gral:
1 2—x T 1 2—x 1
:// /dzdydx:// xdydx:/:vyﬁ_xdsz
0 T 0 0 T 0

= /1(23: —22%) dr =1/3

0

(5) Change the order of integration of fo i) éﬁgﬁ;x dydx and evaluate the integral.

Solution: This question is definitely a bit harder than one I would put on an
exam. The integration region is shown below.
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To do the x-integral first we need to split up the region into two pieces because
of the corner at (2, arctan(2)). Then we have
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The final answer has been simplified using several properties of the logarithm:
log(a) — log(b) = log(a/b), log(1/b) = —log(b), and log(a®) = blog(a).
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cylindrical coordinates.
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Solution: The projection of the region onto the x-y plane is the disk of radius
1. So the integral can be rewritten in cylindrical coordinates as:
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This difficult a problem would be extra credit: Assuming that g € (0,7/2) and
a > 0, compute the following integral
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Solution: The z-integral is easy and we get
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The first thing to do is understand the region of integration. The upper -
boundary x = \/a? — y? is the right-hand semicircle of radius a centered at
(0,0). The lower z-boundary is the line x = cot (f)y or y = tan (f)z, a line
through (0,0) with angle 8. The y boundaries are the z-axis and the height
where the line intersects the circle. So our region of integration is simply a
circular wedge of radius a and angle 3 from the x-axis. Then our integral is
much easier in polar coordinates:
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With a substitution u = r?, this integral can be done with integration by

parts, or looked up in a table, with the final answer being Sa?(In (a) — 1).



