
Math 3298 Practice Midterm 2 Solutions

Please let me know if you think there are errors in any of the solutions.

(1) Find the average value of the function 1 + 3x + y on the triangle with vertices
(0, 0), (1, 0), and (0, 2).

Solution: The area of the triangle is equal to one, so the average value will
simply be the integral∫ 1

0

∫ 2−2x

0

(1 + 3x+ y) dy dx =

∫ 1

0

(4− 4x2) dx =
8

3

(2) Find the volume of the solid inside the sphere x2 + y2 + z2 = 9 and outside the
cylinder x2 + y2 = 1.

Solution: This is probably easiest in cylindrical coordinates. Solving the
sphere boundary equation for z we find z = ±

√
9− x2 − y2 = ±

√
9− r2. So

the volume is∫ 2π

0

∫ 3

1

∫ √9−r2
−
√
9−r2

rdzdrdθ =

∫ 2π

0

∫ 3

1

2r
√

9− r2drdθ

=

∫ 2π

0

−2

3
(9− r2)3/2|31dθ =

4π 83/2

3

(3) Compute the integral

∫ ∫ ∫
R

√
x2 + y2 dV where R is the region inside the

cylinder x2 + y2 = 25 and between z = −1 and z = 4.

Solution: Again, cylindrical coordinates are the best choice for this problem.

∫ ∫ ∫
R

√
x2 + y2 dV =

∫ 5

0

∫ 2π

0

∫ 4

−1
r2 dz dθ dr =

∫ 5

0

∫ 2π

0

5r2 dθ dr

=

∫ 5

0

10πr2 dr =
10πr3

3
|50 =

1250π

3

(4) Find the volume of the solid bounded by the planes z = x, y = x, x + y = 2,
and z = 0.

Solution: This is a tetrahedron. By considering any three of the four bound-
ary equations, we can find that the vertices are (0, 0, 0), (1, 1, 0), (1, 1, 1), and



2

(0, 2, 0). This helps to sketch the figure and determine the bounds for the inte-
gral:

V =

∫ 1

0

∫ 2−x

x

∫ x

0

dz dy dx =

∫ 1

0

∫ 2−x

x

x dy dx =

∫ 1

0

xy|2−xx dx

=

∫ 1

0

(2x− 2x2) dx = 1/3

(5) Change the order of integration of
∫ 2

0

∫ Arctan(πx)
Arctan(x)

dydx and evaluate the integral.

Solution: This question is definitely a bit harder than one I would put on an
exam. The integration region is shown below.
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To do the x-integral first we need to split up the region into two pieces because
of the corner at (2, arctan(2)). Then we have∫ arctan(2)

0

∫ tan(y)

tan(y)/π

dx dy +

∫ arctan(2π)

arctan(2)

∫ 2

tan(y)/π

dx dy =

∫ arctan(2)

0

(tan(y)− tan(y)/π)dy +

∫ arctan(2π)

arctan(2)

(2− tan(y)/π)dy =

−2 arctan(2) + 2 arctan(2π) +
(−1 + π) log(5)

2π
+

log
(

5
1+4π2

)
2π

≈ .827 . . .

The final answer has been simplified using several properties of the logarithm:
log(a)− log(b) = log(a/b), log(1/b) = − log(b), and log(ab) = b log(a).

(6) Compute the integral

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)3/2 dz dy dx by changing to

cylindrical coordinates.
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Solution: The projection of the region onto the x-y plane is the disk of radius
1. So the integral can be rewritten in cylindrical coordinates as:∫ 2π

0

∫ 1

0

∫ 2−r2

r2
r4 dz dr dθ

which evaluates to

=
1

5

∫ 2π

0

∫ 1

0

(2− 2r2)r4 dr dθ = 8π/35

(7) This difficult a problem would be extra credit: Assuming that β ∈ (0, π/2) and
a > 0, compute the following integral∫ a sinβ

0

∫ √a2−y2

y cotβ

∫ 1

0

ln (x2 + y2) dz dx dy

Solution: The z-integral is easy and we get∫ a sinβ

0

∫ √a2−y2

y cotβ

ln (x2 + y2) dx dy

The first thing to do is understand the region of integration. The upper x-
boundary x =

√
a2 − y2 is the right-hand semicircle of radius a centered at

(0, 0). The lower x-boundary is the line x = cot (β)y or y = tan (β)x, a line
through (0, 0) with angle β. The y boundaries are the x-axis and the height
where the line intersects the circle. So our region of integration is simply a
circular wedge of radius a and angle β from the x-axis. Then our integral is
much easier in polar coordinates:∫ a

0

∫ β

0

ln (r2)r dθ dr = β

∫ a

0

ln (r2)r dr

With a substitution u = r2, this integral can be done with integration by
parts, or looked up in a table, with the final answer being βa2(ln (a)− 1

2
).


