Math 3298 Worksheet 40:

Group members (2 to 4): \qquad
(1) Suppose the magnitude of a 3D vector field $F=\left(f_{1}, f_{2}, f_{3}\right)$ is bounded in the sense that at each point in space $|F|=\sqrt{f_{1}^{2}+f_{2}^{2}+f_{3}^{2}} \leq 1$. Use the divergence theorem to find an upper bound on the magnitude of $\iiint_{R} \operatorname{div} F d V$ where R is a region in space with a smooth boundary S.
(2) For the vector field $G=\left(-2 x z, 0, y^{2}\right)$:
(a) Compute the curl of G.
(b) Show that $\oint_{C} G \cdot d r=0$ for any simple closed smooth curve on the sphere $x^{2}+y^{2}+z^{2}=4$.

