Group members (2 to 4): \qquad
(1) Let D be the region in \mathbb{R}^{3} that is bounded below by the plane $z=0$, on the sides by the cylinder $r=\cos (\theta)$, and on top by the paraboloid $z=3 r^{2}$. Compute the flux of the vector field $F=(x, y, z)$ through the surface of D using the divergence theorem.
(2) Find a non-zero vector field F such that the flux integral $\iint_{S} F \cdot n d S=0$ where S is the upper unit hemisphere $\left(x^{2}+y^{2}+z^{2}=1, z \geq 0\right)$.

