Group members (2 to 4): \qquad
(1) Compute the curvature of $g(t)=\left(t, e^{t}\right)$.
(2) Find the equation for the osculating circle to the curve $g(t)=\left(t, e^{t}\right)$ at the point $(0,1)$. (The osculating circle is tangent to the curve g at that point, with a curvature equal to the curvature of g at that point. The center of the circle is in the normal direction \vec{N} away from the contact point.)

