HOMEWORK 2, DUE FRIDAY, MAY 30TH.

- (1) Match the following 3D parametric curves to the six images shown on the following page.
 - (a) $x = \cos(10t)$, y = t, $z = \sin(10t)$. (b) x = t, $y = t^2$, $z = e^{-t}$. (c) x = t, $y = 1/(1 + t^2)$, $z = t^2$. (d) $x = e^{-t}\cos(10t)$, $y = e^{-t}\sin(10t)$, $z = e^{-t}$. (e) $x = \cos(t)$, $y = \sin(t)$, $z = \sin(5t)$. (f) $x = \cos(t)$, $y = \sin(t)$, $z = \ln(t)$.
- (2) Find $\vec{r}'(t)$ and sketch the plane curve $\vec{r}(t) = (1 + t, \sqrt{t})$. Include the vectors $\vec{r}(1)$ and $\vec{r}'(1)$ in your sketch.
- (3) Find the unit tangent vector $\vec{T}(t)$ of the curve $\vec{r} = 4\sqrt{t}\vec{i} + t^2\vec{j} + t\vec{k}$ at t = 1.
- (4) Find parametric equations for the tangent line to $x = t^2 1$, $y = t^2 + 1$, z = t + 1 at the point (-1, 1, 1).
- (5) If $u(t) = \vec{r}(t) \cdot [\vec{r}'(t) \times \vec{r}''(t)]$, show that $u'(t) = \vec{r}(t) \cdot [\vec{r}'(t) \times \vec{r}'''(t)]$.
- (6) Find the length of the curve $\vec{r}(t) = (3\cos 2t, 3\sin 2t, 3t)$ with t in $[0, \pi/2]$.
- (7) Find the length of the curve $\vec{r}(t) = (2\cos 3t, 2\sin 3t, 2t^{3/2})$ with t in [0, 1].
- (8) Parameterize the curve $\vec{r}(t) = (2\cos 3t, 2\sin 3t, 2t^{3/2})$ by arc length.
- (9) Find the unit tangent \vec{T} , unit normal \vec{N} , and curvature κ of the curve $\vec{r}(t) = (t^2, 2t, \ln(t))$ when t = 4.
- (10) For what value of x is the curvature of the curve $y = e^x$ maximized? What is the limit of the curvature as $x \to \infty$?
- (11) Two graphs are shown below; one is a curve y = f(x) and the other is the curvature $\kappa(x)$ of that curve. Identify which is which.

I

VI

(12) Sketch the contour map of the function whose graph is shown below.

- (13) Sketch a contour map of the function $f = x^2 y^2$.
- (14) Sketch a contour map of the function $f = e^{y/x}$.
- (15) Compute the following limits:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2(y)}{2x^2 + y^2}$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{y^4 \sin(xy)}{x^2 + y^2}$

For Exercises 16 - 19, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

- (16) $f(x,y) = e^{xy} + xy$ (17) $f(x,y) = x^4$
- (18) $f(x,y) = \frac{x+1}{y+1}$ (19) $f(x,y) = \ln(xy) + x^y$

For Exercises 20 and 21, calculate all four second-order partial derivatives of the function and verify that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

(20)
$$f(x,y) = x^2 + y^2$$
 (21) $f(x,y) = \cos(x+y)$

(22) The ideal gas law is PV = cT where P is the pressure, V is the volume, T is the temperature and c is a constant for a given mass of some gas. Show that

$$\frac{\partial P}{\partial V}\frac{\partial V}{\partial T}\frac{\partial T}{\partial P} = -1.$$

(Treat each variable as a function of the other two.)

(23) Find the linearization L(x, y) of the function $f(x, y) = x\sqrt{y}$ at the point (1, 4).