
Math 4230 Practice final exam.

(1) Find all the complex solutions to the equation cos(z) = sin(z).

(2) Without computing the integral exactly, show that∣∣∣∣∫
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if Γ is the counter-clockwise arc of the circle |z| = 2 starting at 2 and ending at 2i.

(3) Find an analytic function that maps the shaded region below onto the upper half-
plane. (One way is to compose a Mobius transformation with an exponential func-
tion.)
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(4) Find the recursion relation for the coefficients of the power series solution
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around z = 0 which satisfies the differential equation

g′′ − zg′ − g = 0, g(0) = 0, g′(0) = 1.

(5) Construct a function f(z) which has a pole of order 2 at the origin, a simple pole at
∞, and Res(f ; 0) = 1.

(6) Compute the integral
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(x2 + 9)2
dx by using the residue theorem.


