Math 4230 Practice final exam solutions.

(1) Find all the complex solutions to the equation $\cos(z) = \sin(z)$. Solution: From the definition of the complex $\sin(z)$ and $\cos(z)$, we are looking for solutions to

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{iz} - e^{-iz}}{2i} = \sin(z)$$

Since $e^{-iz} = 1/e^{iz}$, we can rewrite this equation in terms of $q = e^{iz}$ as

$$\frac{q+1/q}{2} = \frac{q-1/q}{2i}$$

Since $q \neq 0$, we can multiply by q and regroup terms to get $q^2(1-i) = 1+i$, or $q^2 = \frac{1+i}{1-i} = i$. So q must be one of the two square roots of i, which are $\pm \frac{1+i}{\sqrt{2}} = \pm \sqrt{2}e^{i\pi/4} = \{e^{i\pi/4}, e^{i5\pi/4}\}.$ So either $q = e^{iz} = e^{i\pi/4}$ or $q = e^{iz} = e^{i5\pi/4}$. Inverting the exponential is not

So either $q = e^{iz} = e^{i\pi/4}$ or $q = e^{iz} = e^{i5\pi/4}$. Inverting the exponential is not unique - we have to include any multiple of $2\pi ni$ for $n \in \mathbb{Z}$. So $iz = i\pi/4 + i2\pi n$ or $iz = i5\pi/4 + i2\pi n$. So z is either $\pi/4$ or $5\pi/4$ plus any integer multiple of 2π . In other words, the only solutions are the ones you would expect from the real trig functions (somewhat surprising).

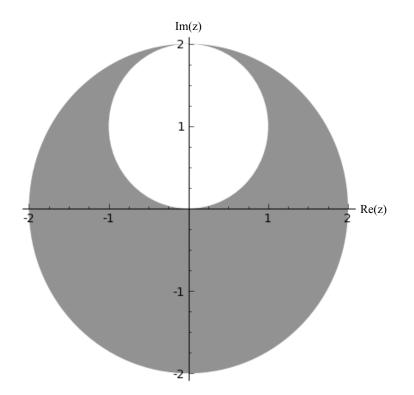
(2) Without computing the integral exactly, show that

$$\left| \int_{\Gamma} \frac{1}{z^2 - i} \, dz \right| < \frac{\pi}{3}$$

if Γ is the counter-clockwise arc of the circle |z| = 2 starting at 2 and ending at 2*i*.

Solution: The integral can be bounded by the product of the length of the contour times the maximum modulus of the integrand on the contour. Since this contour is a quarter of a circle of radius 2, the length is $(2\pi 2)/4 = \pi$. The integrand is largest when the modulus of the denominator $z^2 - i$ is smallest, which occurs when the argument of z is $\pi/4$ and $z^2 = 4i$. At that point $\left|\frac{1}{z^2-i}\right| = 1/3$. So the bound is $\pi/3$. This is a strict inequality because $\left|\frac{1}{z^2-i}\right| < 1/3$ at every other point on the quarter circle.

(3) Find an analytic function that maps the shaded region below onto the upper halfplane. (One way is to compose a Mobius transformation with an exponential function.)



Solution: Using the hint strategy, we first map the cusp point 2i to ∞ using a Mobius transformation. While we are at it, we might as well choose to send 0 to 0 and -2 to $i\pi$ so that the image is the same strip we looked at in homework 10. Having made three choices there is only one such Mobius function $f_1(z) = \frac{az+b}{cz+d}$. Our conditions become

$$f(2i) = \infty$$
: same as $1/f(2i) = 0$, or $\frac{c2i+d}{a2i+b} = 0$,
 $f(0) = b/d = 0$,

and

$$f(-2) = \frac{-2a+b}{-2c+d} = i\pi$$

So b = 0 and d = -2ic from the first two conditions. If we choose c = 1, then d = -2i and the third condition can be rearranged to give $-2a = i\pi(-2-2i)$ and then $a = -\pi + i\pi$. So $w = f_1(z) = \pi z(\frac{-1+i}{z-2i})$.

This transformation maps the shaded region into the strip $0 < Im(w) < \pi$. The exponential function sends this to the upper half plane, so the full transformation we want is

$$e^{f_1(z)} = e^{\pi z (\frac{-1+i}{z-2i})}.$$

There are other possible answers, since we could compose at the end with any analytic function that takes the upper half-plane to itself.

(4) Find the recursion relation for the coefficients of the power series solution $\sum_{n=0}^{\infty} a_n z^n$ around z = 0 which satisfies the differential equation

$$g'' - zg' - g = 0, \ g(0) = 0, \ g'(0) = 1.$$

Solution: We use a series form $g = \sum_{n=0}^{\infty} a_n z^n$, and then $-zg' = \sum_{n=1}^{\infty} -na_n z^n$ and $g'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}z^n$. So

$$g'' - zg' - g = 2a_2 + a_0 + \sum_{n=1}^{\infty} \left[(n+2)(n+1)a_{n+2} - na_n + a_n \right] z^n = 0$$

Each coefficient of every power of z must vanish, so the sum of the constants $2a_2 + a_0 = 0$, and for $n \ge 1$ we must have $(n+2)(n+1)a_{n+2} - na_n + a_n = 0$ or

$$a_{n+2} = a_n \frac{n-1}{(n+2)(n+1)}$$
 (for $n \ge 1$).

Since g(0) = 0, $a_0 = 0$, which implies that all the even coefficients vanish: $a_{2n} = 0$.

(5) Construct a function f(z) which has a pole of order 2 at the origin, a simple pole at ∞ , and Res(f; 0) = 1.

Solution: Any function of the form $\frac{A}{z^2} + \frac{1}{z} + B + Cz$ with constants $A \neq 0, B, C \neq 0$ has the required properties.

(6) Compute the integral $\int_{-\infty}^{\infty} \frac{1}{(x^2+9)^2} dx$ by using the residue theorem.

Solution: Since $(z^2 + 9)^2 = (z - 3i)^2(z + 3i)^2$, the integrand has a pair of secondorder poles at z = 3i and z = -3i. For an integral of this type (covered in section 6.3 of our text) we can use the limit of semi-circular contours in the upper half plane, which means we only need the residue at z = 3i.

The residue can be calculated from the formula (in 6.1):

$$Res(f;z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{(m-1)}}{dz^{(m-1)}} \left[(z-z_0)^m f(z) \right].$$

In our case, $z_0 = 3i$ and m = 2, so

$$Res\left(\frac{1}{(z^2+9)^2};3i\right) = \lim_{z \to 3i} \frac{d}{dz} \left[(z-3i)^m \frac{1}{(z^2+9)^2} \right] = \frac{d}{dz} \left[\frac{1}{(z+3i)^2} \right] \Big|_{z=3i}$$
$$= \frac{-2}{(6i)^3} = -i/108$$

The integral is $2\pi i$ times this residue, so

$$\int_{-\infty}^{\infty} \frac{1}{(x^2 + 9)^2} \, dx = (2\pi i)(-i/108) = \pi/54.$$