Math 4326 Practice Final Solutions

Please notify me if you think these solutions have mistakes.

The actual test will consist of 8 questions which should be fairly similar to some of the questions below. You will be required to answer 6 of those 8 questions.

(1) If the determinant $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 5$, compute the determinant $\begin{vmatrix} 2a+d-g & 2b+e-h & 2c+f-i \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix}$.

Solution: Adding multiples of one row to another does not affect the determinant, so

$$\begin{vmatrix} 2a+d-g & 2b+e-h & 2c+f-i \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix} = \begin{vmatrix} 2a & 2b & 2c \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix}.$$

Multiplying a row by a constant changes the determinant by that constant. Since each of the three rows has been multiplied by 2, we have

$$\begin{vmatrix} 2a & 2b & 2c \\ 2d & 2e & 2f \\ 2g & 2h & 2i \end{vmatrix} = 2^3 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 2^3 * 5 = 40.$$

A common mistake is to think that |cA| = c|A| for a scalar c and $n \times n$ matrix A, when in fact $|cA| = c^n |A|$.

(2) Determine a value for x such that the matrix $A = \begin{pmatrix} 1 & -1 & -2 & -2 \\ 0 & 2 & x & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ is

diagonalizable.

Solution: There are two eigenvalues (1 and 2) each with algebraic multiplicity two. To be diagonalizable, each eigenspace must be two-dimensional, which means that the nullspace of $A - \lambda$ must be two-dimensional. If we first examine the $\lambda = 2$ eigenspace, we see that

$$A - 2I = \begin{pmatrix} -1 & -1 & -2 & -2 \\ 0 & 0 & x & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and this will have two pivots (and thus have a 4-2=2 dimensional nullspace) only if x = 2. Likewise, considering

$$A - I = \begin{pmatrix} 0 & -1 & -2 & -2 \\ 0 & 1 & x & 2 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

shows that x = 2 is the only choice that will give a two-dimensional nullspace. So x = 2 is the only solution.

(3) Find the eigenvalues of the $n \times n$ matrices A with $a_{ij} = 1$ for $i \neq j$ and $a_{ii} = 2$. Solution: This could be done by induction or a direct argument. I will show the direct argument here.

The eigenvalues of A can be computed by finding the solutions of the charac-

teristic equation $|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 1 & \dots & 1 & 1 \\ 1 & 2 - \lambda & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 2 - \lambda & 1 \\ 1 & 1 & \dots & 1 & 2 - \lambda \end{vmatrix} = 0.$

The determinant is unaffected by adding a multiple of a row to other rows, or a multiple of a column to other columns. We can use this property to try to rearrange the determinant to an upper- or lower-triangular form. If we subtract the first row from all the rows below it, we have

$2 - \lambda$	1		1	1		$2-\lambda$	1		1	1
1	$2 - \lambda$		1	1		$\lambda - 1$	$1 - \lambda$		0	0
÷	:	۰.	•	÷	=	:	:	۰.	:	:
										0
1	1		1	$2 - \lambda$		$\lambda - 1$	0		0	$1 - \lambda$

Now if we add each column except the first to the first column we get

$2 - \lambda$	1	 1	1	$1+n-\lambda$	1	 1	1
$\lambda - 1$	$1 - \lambda$	 0	0	0	$1 - \lambda$	 0	0
				÷			
				0			
$\lambda - 1$	0	 0	$1 - \lambda$	0	0	 0	$1 - \lambda$

Since this is upper triangular we can see that the characteristic equation is $(1-\lambda)^{n-1}(1+n-\lambda)=0$ and the eigenvalues are 1, with multiplicity n-1, and 1 + n with multiplicity 1. (Since the matrix is symmetric, the algebraic multiplicities are equal to the geometric multiplicities.)

- (4) Indicate why each statement below is true or false:
 - (a) If the kernel of a 7×6 matrix A is 3-dimensional, then the range of A must be 4-dimensional.

Solution: False. The range is 3-dimensional, since for a $m \times n$ matrix dim(range) + dim(kernel) = n.

(b) If A is 2×2 , tr(A) = 0, and det(A) = 1 then A must be diagonalizable. Solution:

True (over the complex numbers). We can determine the eigenvalues since $tr(A) = \lambda_1 + \lambda_2 = 0$ and $det(A) = \lambda_1 \lambda_2 = 1$. The first condition shows $\lambda_2 = -\lambda_1$, which we can substitute in to the second condition to find $\lambda_1^2 = -1$. So $\lambda_1 = i$ and $\lambda_2 = -i$. Since the eigenvalues are distinct, A is diagonalizable over complex matrices. It is not diagonalizable over only real matrices, although it must be similar to $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over real matrices.

(c) In the space of continuous real-valued functions on the interval [-1, 1], the set of functions S such that f(-x) = -f(x) is a vector subspace. Solution: True. Suppose that f_1 and f_2 are in S. We must show that a linear combination g of f_1 and f_2 is still in S:

$$g(-x) = (c_1f_1 + c_2f_2)(-x) = c_1f_1(-x) + c_2f_2(-x)$$

$$= -(c_1f_1(x) + c_2f_2(x)) = -g(x).$$

(d) If A is a 4×4 matrix that can be partitioned into a 2×2 block-uppertriangular form $A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$ with A_1 and A_2 invertible, then A is invertible.

Solution: False. It is true that if A_1 and A_3 are invertible then A is invertible.

(5) Suppose that a matrix A can be factored as A = BC where C is a square matrix. How are the column spaces of A, B, and C related?

Solution: The column space of A must be contained in the column space of B, since if $x \in Col(A)$ then x = Ay = BCy = B(Cy). If C is invertible, then this containment can be reversed by considering $AC^{-1} = B$ and then the two column spaces are equal.

(6) Suppose T is the linear transformation that sends polynomials of degree 3 or

less into \mathbb{R}^4 by $T(p(x)) = \begin{pmatrix} p(0) \\ p(1) \\ \frac{dp}{dx}(0) \\ \frac{dp}{dx}(1) \end{pmatrix}$. Find the matrix for T relative to the basis $\{1, x, x^2, x^3\}$ for \mathbb{P}_3 and the standard basis for \mathbb{R}^4 . What is the rank of

this transformation?

Solution: The columns of the matrix will be the images of the basis of the domain. So we compute

$$T(1) = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \ T(x) = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, \ T(x^2) = \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}, \ T(x^3) = \begin{pmatrix} 0\\1\\0\\3 \end{pmatrix}$$

Then the matrix is $\begin{pmatrix} 1 & 0 & 0 & 0\\1 & 1 & 1 & 1\\0 & 1 & 0 & 0\\0 & 1 & 2 & 3 \end{pmatrix}$. This row-reduces to the identity matrix

which shows the rank is 4.

(7) Find the general solution to the linear differential equation x' = Ax where $A = \begin{pmatrix} 17 & -24 \\ 14 & -24 \end{pmatrix}$.

$$A = \begin{pmatrix} 11 & 21 \\ 12 & -7 \end{pmatrix}.$$
Solution: The ch

Solution: The characteristic polynomial of A is $|\lambda I - A| = \lambda^2 - 10 * \lambda + 169$. The roots of this are the eigenvalues $\lambda = 5 \pm 12i$. We can choose either eigenvalue, so arbitrarily lets choose 5 + 12i. Its eigenvector is found by computing the kernel of A - (5 + 12i)I. To do this we row-reduce $A - (5 + 12i)I = \begin{pmatrix} 12 - 12i & -24 \\ 12 & -12i - 12 \end{pmatrix}$ to find that $v_1 = \begin{pmatrix} 2 \\ 1-i \end{pmatrix}$. This means that the general complex solution to the differential equation is $z_1v_1e^{5t+12it} + z_2\bar{v}_1e^{5t-12it}$ where z_1 and z_2 are complex constants. The general real solution is

$$x(t) = c_1 Re(v_1 e^{5t+12it}) + c_2 Im(v_1 e^{5t+12it}) =$$

$$c_1 \left(\begin{array}{c} 2e^{5t} \cos 12t \\ e^{5t} \sin 12t + e^{5t} \cos 12t \end{array} \right) + c_2 \left(\begin{array}{c} 2e^{5t} \sin (12t) \\ e^{5t} \sin (12t) - e^{5t} \cos (12t) \end{array} \right).$$

Different choices of the eigenvalue and eigenvector can lead to somewhat different looking answers.

(8) Show that if A is a diagonalizable $n \times n$ matrix and $c_A(\lambda)$ is its characteristic polynomial that $c_A(A) = 0$.

Solution: The key property to note is that powers of diagonalizable matrices are easy to compute: $A^n = (SDS^{-1})^n = SD^nS^{-1}$. If $c_A(x) = a_0 + a_1x + \ldots + a_nx^n$ then

$$c_A(A) = a_0 I + a_1 A + \ldots + a_n A^n$$

 $= a_0 SIS^{-1} + a_1 SDS^{-1} + \ldots + a_n SD^n S^{-1} = S(a_0 I + a_1 D + \ldots + a_n D^n)S^{-1}.$

Since D is diagonal with the eigenvalues as diagonal entries,

$$c_A(A) = S \begin{pmatrix} c_A(\lambda_1) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & c_A(\lambda_n) \end{pmatrix} S^{-1} = S0S^{-1} = 0.$$

(9) Find the condition number (the ratio of the largest to the smallest singular value) of the matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$.

Solution: We compute the singular values as the positive square roots of the eigenvalues of $A^T A = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$. The characteristic polynomial of $A^T A$ is $det(\lambda I - A^T A) = \lambda^2 - 4\lambda + 2$, which has roots $2 \pm \sqrt{2}$. So $\sigma_1 = \sqrt{2 + \sqrt{2}}$ and $\sigma_2 = \sqrt{2 - \sqrt{2}}$, and the condition number is $\frac{\sqrt{2 + \sqrt{2}}}{\sqrt{2 - \sqrt{2}}} = 1 + \sqrt{2}$. The last simplification is somewhat tricky and would not be required.

- (10) Indicate why each statement below is true or false. If it is false, find additional conditions that would make it true.
 - (a) For any non-zero column vector $v \in \mathbb{R}^n$, vv^T is a projection matrix. Solution: False. vv^T is a projection matrix only if the length of v is 1. But $\frac{v v^T}{v^T v}$ is always a projection matrix.
 - (b) If A is a symmetric matrix, then the matrix product $B^T A B$ is symmetric as well. Solution: True. $(B^T A B)^T = B^T A^T (B^T)^T = B^T A B$.

- (c) An orthogonal projection matrix can have eigenvalues 0, 1, and -1. Solution: False. An orthogonal projection matrix P has the properties that $P^2 = P$ (it is a projection) and $P^T = P$ (it is symmetric). Since it is symmetric, it can be diagonalized $P = SDS^{-1}$, and since $P = P^2$ we have $SDS^{-1} = SD^2S^{-1}$ and then $D = D^2$. Since D is diagonal, we have $\lambda = \lambda^2$ for each entry on the diagonal which means $\lambda = 0$ or $\lambda = 1$. So the eigenvalues can only be 0 or 1.
- (d) If W is a subspace of \mathbb{R}^n , let $z = proj_W(y)$ be the orthogonal projection of y onto W. Then $proj_W(z) = z$. Solution: True. z is already in W, so it is its own projection onto W.
- (11) Suppose that A is an $n \times n$ invertible symmetric positive definite matrix. Show that A^{-1} is also positive definite.

Solution: Since A is symmetric, it can be orthogonalized diagonalized, and since it is positive definite the eigenvalues must be positive. So $A = UDU^T$ where U is an orthogonal matrix and D is diagonal with positive entries on the diagonal. Then we can compute $A^{-1} = U D^{-1} U^T$ and see that it is also symmetric and positive definite.

(12) Use the QR decomposition
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

to solve the least-squares problem of minimizing $|Ax - b|$ where $b = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$.
Solution: We can use a QR decomposition $A = QR$ to solve the least-squares

solution: We can use a QR decomposition A = QR to solve the least-squares problem by solving $Rx = Q^T b$. Since $Q^T b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ this is particularly easy in this case - the unique least-squares solution is x = 0. (This is because in this case b is orthogonal to the column space of A.)