
Math 4326 Practice Final Solutions

Please notify me if you think these solutions have mistakes.

The actual test will consist of 8 questions which should be fairly similar to some of
the questions below. You will be required to answer 6 of those 8 questions.

(1) If the determinant

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 5, compute the determinant

∣∣∣∣∣∣
2a+ d− g 2b+ e− h 2c+ f − i

2d 2e 2f
2g 2h 2i

∣∣∣∣∣∣ .
Solution: Adding multiples of one row to another does not affect the deter-

minant, so∣∣∣∣∣∣
2a+ d− g 2b+ e− h 2c+ f − i

2d 2e 2f
2g 2h 2i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2a 2b 2c
2d 2e 2f
2g 2h 2i

∣∣∣∣∣∣ .
Multiplying a row by a constant changes the determinant by that constant.
Since each of the three rows has been multiplied by 2, we have∣∣∣∣∣∣

2a 2b 2c
2d 2e 2f
2g 2h 2i

∣∣∣∣∣∣ = 23

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 23 ∗ 5 = 40.

A common mistake is to think that |cA| = c|A| for a scalar c and n× n matrix
A, when in fact |cA| = cn|A|.

(2) Determine a value for x such that the matrix A =


1 −1 −2 −2
0 2 x 2
0 0 1 −1
0 0 0 2

 is

diagonalizable.
Solution: There are two eigenvalues (1 and 2) each with algebraic multiplicity

two. To be diagonalizable, each eigenspace must be two-dimensional, which
means that the nullspace of A−λ must be two-dimensional. If we first examine
the λ = 2 eigenspace, we see that

A− 2I =


−1 −1 −2 −2

0 0 x 2
0 0 −1 −1
0 0 0 0


1



2

and this will have two pivots (and thus have a 4− 2 = 2 dimensional nullspace)
only if x = 2. Likewise, considering

A− I =


0 −1 −2 −2
0 1 x 2
0 0 0 −1
0 0 0 1


shows that x = 2 is the only choice that will give a two-dimensional nullspace.
So x = 2 is the only solution.

(3) Find the eigenvalues of the n× n matrices A with aij = 1 for i 6= j and aii = 2.
Solution: This could be done by induction or a direct argument. I will show

the direct argument here.
The eigenvalues of A can be computed by finding the solutions of the charac-

teristic equation |A− λI| =

∣∣∣∣∣∣∣∣∣∣

2− λ 1 . . . 1 1
1 2− λ . . . 1 1
...

...
. . .

...
...

1 1 . . . 2− λ 1
1 1 . . . 1 2− λ

∣∣∣∣∣∣∣∣∣∣
= 0.

The determinant is unaffected by adding a multiple of a row to other rows,
or a multiple of a column to other columns. We can use this property to try to
rearrange the determinant to an upper- or lower-triangular form. If we subtract
the first row from all the rows below it, we have

∣∣∣∣∣∣∣∣∣∣

2− λ 1 . . . 1 1
1 2− λ . . . 1 1
...

...
. . .

...
...

1 1 . . . 2− λ 1
1 1 . . . 1 2− λ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

2− λ 1 . . . 1 1
λ− 1 1− λ . . . 0 0

...
...

. . .
...

...
λ− 1 0 . . . 1− λ 0
λ− 1 0 . . . 0 1− λ

∣∣∣∣∣∣∣∣∣∣
Now if we add each column except the first to the first column we get

∣∣∣∣∣∣∣∣∣∣

2− λ 1 . . . 1 1
λ− 1 1− λ . . . 0 0

...
...

. . .
...

...
λ− 1 0 . . . 1− λ 0
λ− 1 0 . . . 0 1− λ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1 + n− λ 1 . . . 1 1
0 1− λ . . . 0 0
...

...
. . .

...
...

0 0 . . . 1− λ 0
0 0 . . . 0 1− λ

∣∣∣∣∣∣∣∣∣∣
Since this is upper triangular we can see that the characteristic equation is
(1 − λ)n−1(1 + n − λ) = 0 and the eigenvalues are 1, with multiplicity n − 1,
and 1 + n with multiplicity 1. (Since the matrix is symmetric, the algebraic
multiplicities are equal to the geometric multiplicities.)

(4) Indicate why each statement below is true or false:
(a) If the kernel of a 7× 6 matrix A is 3-dimensional, then the range of A must

be 4-dimensional.
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Solution: False. The range is 3-dimensional, since for a m × n matrix
dim(range) + dim(kernel) = n.

(b) If A is 2 × 2, tr(A) = 0, and det(A) = 1 then A must be diagonalizable.
Solution:
True (over the complex numbers). We can determine the eigenvalues since
tr(A) = λ1 + λ2 = 0 and det(A) = λ1λ2 = 1. The first condition shows
λ2 = −λ1, which we can substitute in to the second condition to find
λ2

1 = −1. So λ1 = i and λ2 = −i. Since the eigenvalues are distinct, A
is diagonalizable over complex matrices. It is not diagonalizable over only

real matrices, although it must be similar to

(
0 1
−1 0

)
over real matrices.

(c) In the space of continuous real-valued functions on the interval [−1, 1], the
set of functions S such that f(−x) = −f(x) is a vector subspace.
Solution: True. Suppose that f1 and f2 are in S. We must show that a
linear combination g of f1 and f2 is still in S:

g(−x) = (c1f1 + c2f2)(−x) = c1f1(−x) + c2f2(−x)

= −(c1f1(x) + c2f2(x)) = −g(x).

(d) If A is a 4 × 4 matrix that can be partitioned into a 2 × 2 block-upper-

triangular form A =

(
A1 A2

0 A3

)
with A1 and A2 invertible, then A is

invertible.
Solution: False. It is true that if A1 and A3 are invertible then A is invert-
ible.

(5) Suppose that a matrix A can be factored as A = BC where C is a square matrix.
How are the column spaces of A, B, and C related?

Solution: The column space of A must be contained in the column space of
B, since if x ∈ Col(A) then x = Ay = BCy = B(Cy). If C is invertible, then
this containment can be reversed by considering AC−1 = B and then the two
column spaces are equal.

(6) Suppose T is the linear transformation that sends polynomials of degree 3 or

less into R4 by T (p(x)) =


p(0)
p(1)
dp
dx

(0)
dp
dx

(1)

. Find the matrix for T relative to the

basis {1, x, x2, x3} for P3 and the standard basis for R4. What is the rank of
this transformation?
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Solution: The columns of the matrix will be the images of the basis of the
domain. So we compute

T (1) =


1
1
0
0

 , T (x) =


0
1
1
1

 , T (x2) =


0
1
0
2

 , T (x3) =


0
1
0
3



Then the matrix is


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

. This row-reduces to the identity matrix

which shows the rank is 4.
(7) Find the general solution to the linear differential equation x′ = Ax where

A =

(
17 −24
12 −7

)
.

Solution: The characteristic polynomial of A is |λI −A| = λ2 − 10 ∗ λ+ 169.
The roots of this are the eigenvalues λ = 5 ± 12i. We can choose either eigen-
value, so arbitrarily lets choose 5 + 12i. Its eigenvector is found by computing
the kernel of A − (5 + 12i)I. To do this we row-reduce A − (5 + 12i)I =(

12− 12i −24
12 −12i− 12

)
to find that v1 =

(
2

1− i

)
. This means that the

general complex solution to the differential equation is z1v1e
5t+12it + z2v̄1e

5t−12it

where z1 and z2 are complex constants. The general real solution is

x(t) = c1Re(v1e
5t+12it) + c2Im(v1e

5t+12it) =

c1

(
2e5t cos 12t

e5t sin 12t+ e5t cos 12t

)
+ c2

(
2e5t sin (12t)

e5t sin (12t)− e5t cos (12t)

)
.

Different choices of the eigenvalue and eigenvector can lead to somewhat dif-
ferent looking answers.

(8) Show that if A is a diagonalizable n × n matrix and cA(λ) is its characteristic
polynomial that cA(A) = 0.

Solution: The key property to note is that powers of diagonalizable matrices
are easy to compute: An = (SDS−1)n = SDnS−1. If cA(x) = a0+a1x+. . .+anx

n

then

cA(A) = a0I + a1A+ . . .+ anA
n

= a0SIS
−1 + a1SDS

−1 + . . .+ anSD
nS−1 = S(a0I + a1D + . . .+ anD

n)S−1.

Since D is diagonal with the eigenvalues as diagonal entries,

cA(A) = S

 cA(λ1) 0 . . . 0
...

...
...

...
0 . . . 0 cA(λn)

S−1 = S0S−1 = 0.



5

(9) Find the condition number (the ratio of the largest to the smallest singular

value) of the matrix A =

 1 1
0 1
0 1

.

Solution: We compute the singular values as the positive square roots of

the eigenvalues of ATA =

(
1 1
1 3

)
. The characteristic polynomial of ATA is

det(λI − ATA) = λ2 − 4λ + 2, which has roots 2 ±
√

2. So σ1 =
√

2 +
√

2

and σ2 =
√

2−
√

2, and the condition number is

√
2+
√

2√
2−
√

2
= 1 +

√
2. The last

simplification is somewhat tricky and would not be required.

(10) Indicate why each statement below is true or false. If it is false, find additional
conditions that would make it true.
(a) For any non-zero column vector v ∈ Rn, vvT is a projection matrix.

Solution: False. vvT is a projection matrix only if the length of v is 1. But
v vT

vT v
is always a projection matrix.

(b) If A is a symmtric matrix, then the matrix product BTAB is symmetric as
well.
Solution: True. (BTAB)T = BTAT (BT )T = BTAB.

(c) An orthogonal projection matrix can have eigenvalues 0, 1, and −1.
Solution: False. An orthogonal projection matrix P has the properties
that P 2 = P (it is a projection) and P T = P (it is symmetric). Since it
is symmetric, it can be diagonalized P = SDS−1, and since P = P 2 we
have SDS−1 = SD2S−1 and then D = D2. Since D is diagonal, we have
λ = λ2 for each entry on the diagonal which means λ = 0 or λ = 1. So the
eigenvalues can only be 0 or 1.

(d) If W is a subspace of Rn, let z = projW (y) be the orthogonal projection of
y onto W . Then projW (z) = z.
Solution: True. z is already in W , so it is its own projection onto W .

(11) Suppose that A is an n× n invertible symmetric positive definite matrix. Show
that A−1 is also positive definite.

Solution: Since A is symmetric, it can be orthogonalized diagonalized, and
since it is positive definite the eigenvalues must be positive. So A = UDUT

where U is an orthogonal matrix and D is diagonal with positive entries on
the diagonal. Then we can compute A−1 = UD−1UT and see that it is also
symmetric and positive definite.
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(12) Use the QR decomposition A =


1 2 0
1 0 0
1 2 2
1 0 2

 =


1
2

1
2
−1

2
1
2
−1

2
−1

2
1
2

1
2

1
2

1
2
−1

2
1
2


 2 2 2

0 2 0
0 0 2



to solve the least-squares problem of minimizing |Ax− b| where b =


1
−1
−1

1

.

Solution: We can use a QR decomposition A = QR to solve the least-squares

problem by solving Rx = QT b. Since QT b =

 0
0
0

 this is particularly easy in

this case - the unique least-squares solution is x = 0. (This is because in this
case b is orthogonal to the column space of A.)


