Math 4326 Practice Midterm 1

This practice test should be roughly twice as long as the real one; some of the problems may be harder than on the exam. You need to justify all your answers.

The test will cover chapters 1 through 4.7, but not 2.6.

(1) Describe the set of b for which the equation Ax = b has a solution if

$$A = \begin{bmatrix} 3 & 17 & 0 \\ -6 & -34 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(2) Find bases for the nullspace and column space of the matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right].$$

- (3) Let A be the matrix $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$. Construct a 4×2 matrix D using only 1s and 0s as entries such that AD = I. Is it possible that CA = I for some 4×2 matrix C? Why or why not?
- (4) Prove that the system

$$3x_1 + 3x_2 + 4x_4 = b_1 x_1 + x_3 - x_4 = b_2 -x_2 + x_3 + x_4 = b_3$$

always has a solution. You should not explicitly find the solution set.

(5) The numbers 20604, 53227, 25755, 20927, and 78421 are divisible by 17. Explain $\begin{bmatrix} 2 & 0 & 6 & 0 & 4 \end{bmatrix}$

	2	0	6	0	4	
	5	3	2	2	7	
why the determinant det	2	5	7	5	5	is also divisible by 17.
	2	0	9	2	7	
why the determinant det	7	8	4	2	1	

- (6) Suppose that v_1 and v_2 are linearly independent column vectors in \mathbb{R}^4 . What are the possible values of the rank of the matrix $v_1v_1^T + v_2v_2^T$?
- (7) Extra credit: Let \mathbb{P}_2 be the vector space of polynomials in the variable x with coefficients in \mathbb{R} and degree at most 2. Find the matrix representation of the linear operator $T: \mathbb{P}_2 \to \mathbb{P}_2$ where $T(p) = \frac{dp}{dx} + p$ for $p \in \mathbb{P}_2$, with respect to the basis $\{1, x, x^2\}$.