Math 4326 Practice Midterm 2

This practice test should be approximately twice as long as the real one; some of the problems may be harder than on the exam. You need to justify all your answers.

The test will cover chapters 1 through 5, with an emphasis on chapter 5.

(1) Determine a value for *h* such that the matrix
$$A = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 0 & 5 & h & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 is diagonal-

izable.

- (2) Find the eigenvalues of an $n \times n$ matrices A with $a_{ij} = 1$ for every i and j (all entries are 1). What is the rank of this matrix?
- (3) Indicate why each statement below is true or false:
 - (a) A is a 7×7 matrix with two distinct eigenvalues, and one of the eigenspaces is 5-dimensional. Then A must be diagonalizable.
 - (b) A nilpotent matrix $A (A^m = 0$ for some positive integer m) can only have one eigenvalue.

(c) By Gerschgorin's theorem, the matrix
$$\begin{pmatrix} 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 10 & 5 \\ 1 & 1 & 1 & 20 \end{pmatrix}$$
 must be diagonalizable

nalizable.

(4) Find an invertible matrix P and a matrix C of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ such that $\begin{pmatrix} -2 & 5 \\ -1 & 2 \end{pmatrix} = PCP^{-1}$

- (5) Suppose T is the linear transformation that sends polynomials of degree 3 or less into \mathbb{R}^2 by $T(p(x)) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix}$. Find the matrix for T relative to the basis $\{1, x, x^2, x^3\}$ for \mathbb{P} and the standard basis for \mathbb{R}^2 .
- (6) Solve the initial value problem x' = Ax where $A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$ and $x(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (7) Extra credit: Show that if A is a diagonalizable $n \times n$ matrix and $c_A(\lambda)$ is its characteristic polynomial that $c_A(A) = 0$.