Math 5233: Profile HMMs; due April 15th
Consider a profile HMM as shown below. The consensus sequence is QWERT; each match state emits the corresponding consensus letter with probability $\frac{19}{20}$, and any other amino acid letter with probability $\frac{1}{380}$. The insertion states I_{k} emit each amino acid with probability $\frac{1}{20}$. The $B \rightarrow M 1$ and $M i \rightarrow M j$ transitions occur with probability $\frac{7}{8}$. The $M i \rightarrow I i$ and $M i \rightarrow D(i+1)$ transitions occur with probability $\frac{1}{16}$. The $I i \rightarrow I i$ self-transitions occur with probability $\frac{1}{4}$. The $I i \rightarrow M(i+1)$ transitions occur with probability $\frac{11}{16}$, while $I i \rightarrow D(i+1)$ transitions occur with probability $\frac{1}{16}$. Finally, the $D i \rightarrow D(i+1)$ and $D i \rightarrow I i$ transitions occur with probability $\frac{1}{16}$, while $D i \rightarrow M(i+1)$ occurs with probability $\frac{7}{8}$. Note that the sum of all probabilities leaving a state should sum to 1 .

(1) What is the $\log _{2}$ likelihood of the most probable path of the consensus sequence in this model?
(2) What is the alignment generated by the sequence QIWET, and what is its log likelihood?
(3) How do the log likelihoods of the sequences AQWERT, AAQWERT, AAAQWERT, etc, compare to that of the consensus?

