Math 5233: Profile HMMs; due April 15th

Consider a profile HMM as shown below. The consensus sequence is QWERT; each match state emits the corresponding consensus letter with probability $\frac{19}{20}$, and any other amino acid letter with probability $\frac{1}{380}$. The insertion states I_k emit each amino acid with probability $\frac{1}{20}$. The $B \to M1$ and $Mi \to Mj$ transitions occur with probability $\frac{7}{8}$. The $Mi \to Ii$ and $Mi \to D(i+1)$ transitions occur with probability $\frac{1}{16}$. The $Ii \to Ii$ self-transitions occur with probability $\frac{1}{4}$. The $Ii \to M(i+1)$ transitions occur with probability $\frac{11}{16}$, while $Ii \to D(i+1)$ transitions occur with probability $\frac{1}{16}$. Finally, the $Di \to D(i+1)$ and $Di \to Ii$ transitions occur with probability $\frac{1}{16}$, while $Ii \to D(i+1)$ transitions occur with probability $\frac{1}{16}$. The $Ii \to M(i+1)$ transitions occur with probability $\frac{1}{16}$. The $Ii \to M(i+1)$ transitions occur with probability $\frac{1}{16}$. The $Ii \to Ii$ transitions occur with probability $\frac{1}{16}$. The $Ii \to Ii$ transitions occur with probability $\frac{1}{16}$. The $Ii \to Ii$ transitions occur with probability $\frac{1}{16}$. The $Ii \to Ii$ transitions occur with probability $\frac{1}{16}$.

- (1) What is the \log_2 likelihood of the most probable path of the consensus sequence in this model?
- (2) What is the alignment generated by the sequence QIWET, and what is its log likelihood?
- (3) How do the log likelihoods of the sequences AQWERT, AAQWERT, AAAQWERT, etc, compare to that of the consensus?